

MSU02 Series EC Note

DC-DC CONVERTER 2W, SMD Package

Features

- Compact Industrial SMD Package
- Unregulated Output Voltage
- I/O Isolation 1500 VDC
- Efficiency up to 91%
- Short Circuit Protection (Hiccup Mode)
- Wide Operating Temperature Range
- Cleaning-washable Process Available (optional)
- Qualified for Lead-free Reflow Solder Process according to IPC/JEDEC J-STD-020D.1

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX brand new MSU02 series is a compact 2W industrial SMD package DC-DC converter that offers unregulated output voltages of 3.3, 5, 12, 15, 24, ±5, ±12, and ±15 VDC, with 1500 VDC I/O isolation and up to 91% efficiency. The MSU02 series features short-circuit protection (Hiccup Mode). A wide operating temperature range ensures consistent performance under various conditions. Additionally, the MSU02 series is qualified for lead-free reflow soldering in accordance with IPC/JEDEC J-STD-020D.1, with an optional cleaning-washable process available.

The MSU02 series is perfectly suited for industrial applications such as automation systems, industrial sensors, control equipment, and IoT applications. Its compact size and robust performance make it an excellent choice for installations requiring efficient, high-quality power conversion in space-constrained environments.

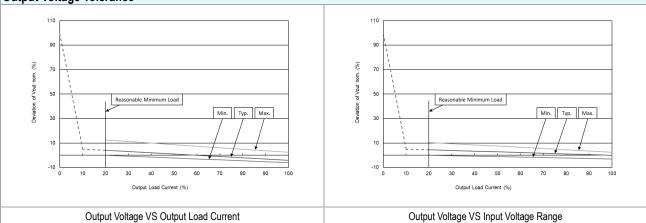
Table of contents

Model Selection Guide		P30
Input Specifications		P30
Output Specifications		P31
Output Voltage Tolerance		P31
General Specifications		Output) P32
EMC Specifications		utput) P33
Environmental Specifications		P34
Characteristic Curves		P35
Package Specifications	P29 MTBF and Reliability	P35

Date:2025-01-16 Rev:1

Model Selection	Guide							
Model	Input	Output	Output	Ing	put	Load	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current (2)	Cur	rent	Regulation	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load			@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	% (max.)	μF	%
MSU02-05S033		3.3	600	472		8	2200	84
MSU02-05S05		5	400	455		7	1000	88
MSU02-05S12		12	167	441		6	180	91
MSU02-05S15	5	15	134	442	12	6	120	91
MSU02-05S24	(4.5 ~ 5.5)	24	83	443	12	7	47	90
MSU02-05D05		±5	±200	460		7	470#	87
MSU02-05D12		±12	±83	438		6	100#	91
MSU02-05D15		±15	±67	442		6	68#	91
MSU02-12S033		3.3	600	199		9	2200	83
MSU02-12S05		5	400	194		6	1000	86
MSU02-12S12		12	167	186		5	180	90
MSU02-12S15	12	15	134	184	7	5	120	91
MSU02-12S24	(10.8 ~ 13.2)	24	83	187	1	5	47	89
MSU02-12D05		±5	±200	190		6	470#	88
MSU02-12D12] [±12	±83	185		5	100#	90
MSU02-12D15		±15	±67	184		5	68#	91
MSU02-24S033		3.3	600	98		6	2200	84
MSU02-24S05] [5	400	96		5	1000	87
MSU02-24S12		12	167	94		3	180	90
MSU02-24S15	24	15	134	93	5	3	120	90
MSU02-24S24	(21.6 ~ 26.4)	24	83	92		4	47	90
MSU02-24D05] [±5	±200	96		5	470#	87
MSU02-24D12	1 [±12	±83	92		3	100#	90
MSU02-24D15] [±15	±67	92		3	68#	91
							# For each outp	4

For each output


Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
Input Voltage Range	5V Input Models	4.5	5	5.5	
	12V Input Models	10.8	12	13.2	
	24V Input Models	21.6	24	26.4	VDC
	5V Input Models	-0.7		9	VDC
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18	
	24V Input Models	-0.7		30	
Input Filter	All Models	Internal Capacitor			

Output Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy				±3.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%
			See Model Se	election Guide	
Load Regulation	lo=20% to 100%	(Operation a	t lower load wi	ll not damage t	he converter,
		but	it may not mee	t all specificati	ons)
Ripple & Noise	0-20 MHz Bandwidth			120	mV _{P-P}
Temperature Coefficient			±0.01	±0.02	%/°C
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode)				

Date:2025-01-16 Rev:1

Output Voltage Tolerance

General Specifications

General Specifications					
Parameter	Conditions Min. Typ.		Тур.	Max.	Unit
VO lociation Voltage	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V 40 100		100	pF	
Switching Frequency			240		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	4,474,521			Hours
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1	Level 2			

EMC Specifications

Parameter		Standards & Level P				
EMI ₍₅₎	Conduction			Class A		
	Radiation	EN 55032	With external components	Class A		
	EN 55035					
	ESD	Direct discharge	Indirect discharge HCP & VCP	A		
	ESD	EN 61000-4-2 Air ± 8kV	Contact ± 6kV			
	Radiated immunity	EN 61000-4-3 10V/m		А		
EMS(5)	Fast transient	EN 61000-4-4 ±2kV		А		
	Surge	EN 61000-4-5 ±2kV		А		
	Conducted immunity	EN 61000-4-6 10Vrms		А		
	PFMF	EN61000-4-8 30A/m for Continuous; 1000A/m for 1 s		А		

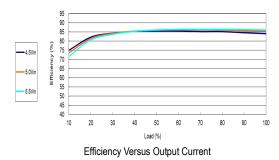
Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+80	°C		
Case Temperature		+105	°C		
Storage Temperature Range	-50	+125	°C		
Humidity (non condensing)		95	% rel. H		
Lead-free Reflow Solder Process	IPC	IPC/JEDEC J-STD-020D.1			

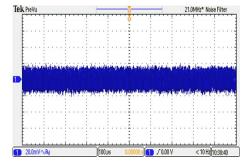
Date:2025-01-16 Rev:1

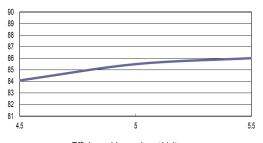
≪> MINMAX[®]

POWER FOR A BETTER FUTURE

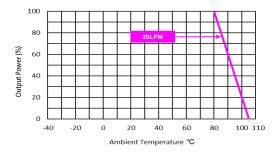
Notes


- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 3 We recommend to protect the converter by a fast blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- 7 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.


Date:2025-01-16 Rev:1

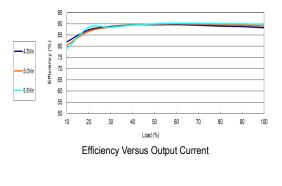

Characteristic Curves

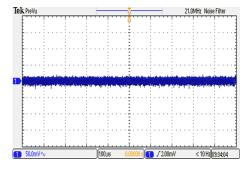
All test conditions are at 25°C The figures are identical for MSU02-05S033

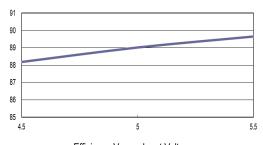


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

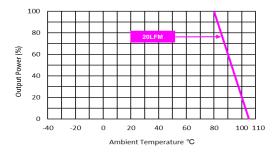
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

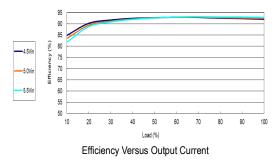

Characteristic Curves

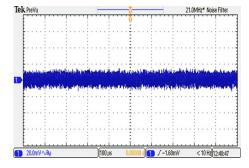
All test conditions are at 25°C The figures are identical for MSU02-05S05

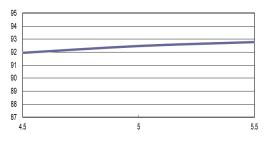


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

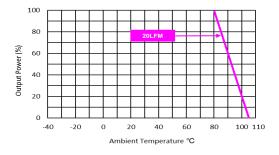
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

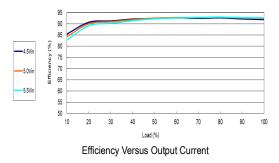

Characteristic Curves

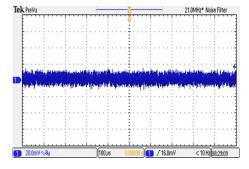
All test conditions are at 25°C The figures are identical for MSU02-05S12

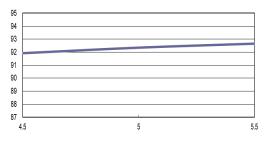


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

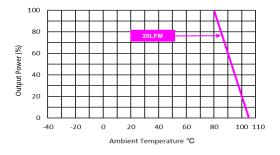
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

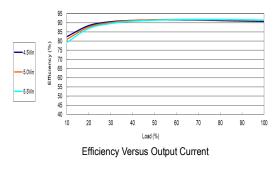

Characteristic Curves

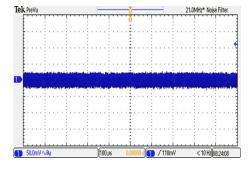
All test conditions are at 25°C The figures are identical for MSU02-05S15

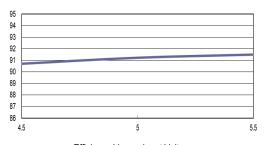


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

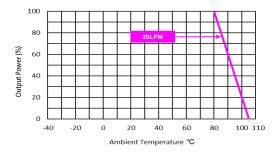
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

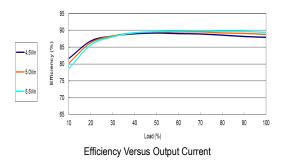

Characteristic Curves

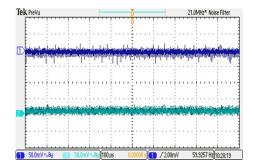
All test conditions are at 25°C The figures are identical for MSU02-05S24

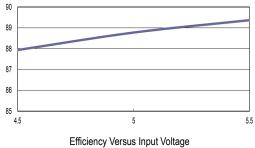


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

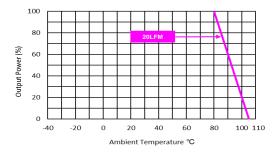
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

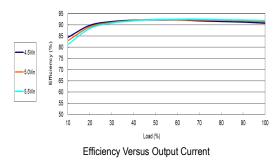

Characteristic Curves

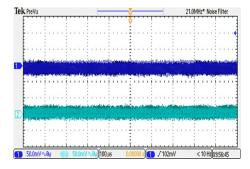
All test conditions are at 25°C The figures are identical for MSU02-05D05

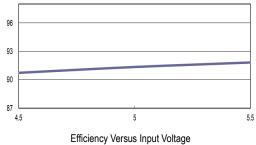


Typical Output Ripple and Noise Vin=Vin nom; Full Load

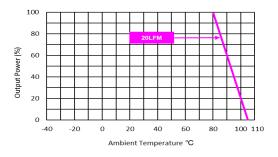
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1


Characteristic Curves

All test conditions are at 25°C The figures are identical for MSU02-05D12

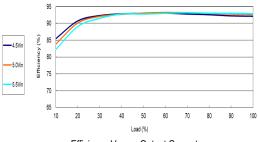


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

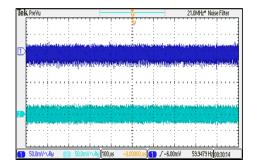
Full Load

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

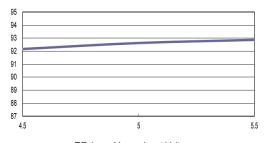
Date:2025-01-16 Rev:1

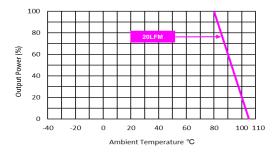

MSU02 Series - EC Notes 11

www.minmaxpower.com



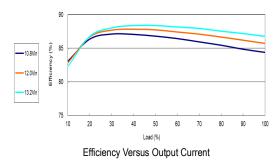
Characteristic Curves

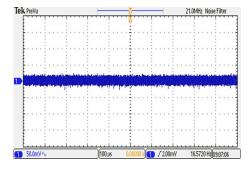

All test conditions are at 25°C The figures are identical for MSU02-05D15

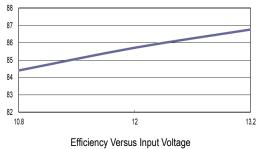

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

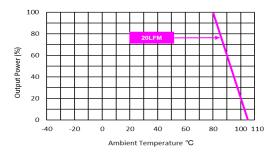
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

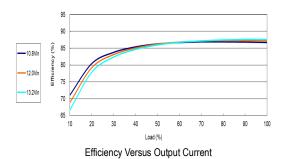

Characteristic Curves

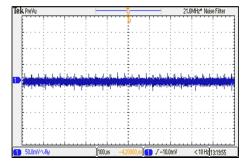
All test conditions are at 25°C The figures are identical for MSU02-12S033

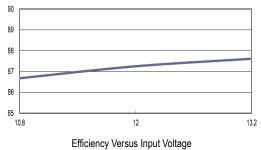


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

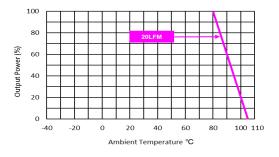
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

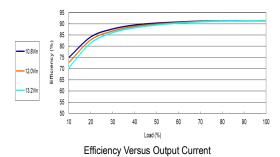

Characteristic Curves

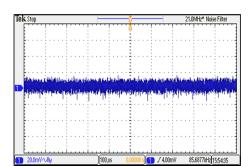
All test conditions are at 25°C The figures are identical for MSU02-12S05

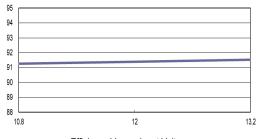


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

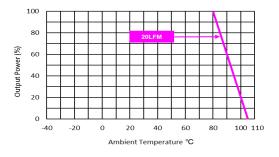
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

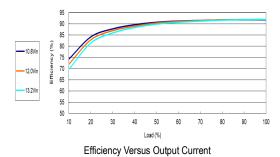

Characteristic Curves

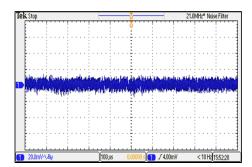
All test conditions are at 25°C The figures are identical for MSU02-12S12

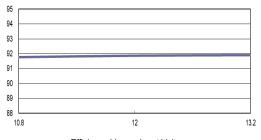


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

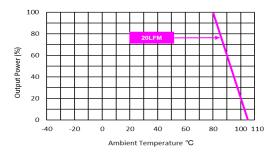
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

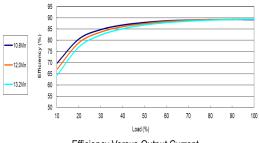

Characteristic Curves

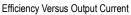
All test conditions are at 25°C The figures are identical for MSU02-12S15

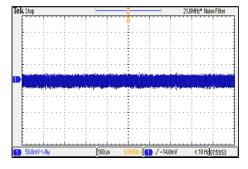


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

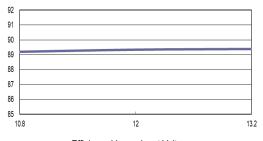
Efficiency Versus Input Voltage Full Load

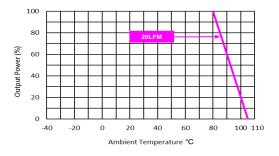

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1



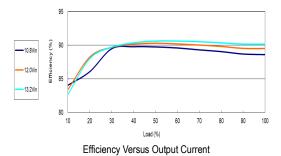
Characteristic Curves

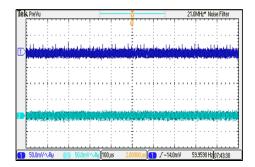

All test conditions are at 25°C The figures are identical for MSU02-12S24

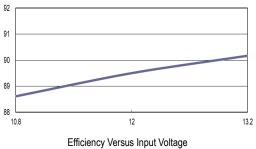


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

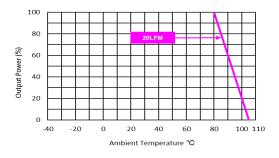
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

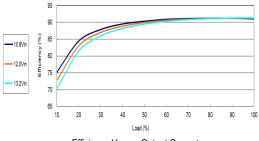

Characteristic Curves

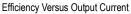
All test conditions are at 25°C The figures are identical for MSU02-12D05

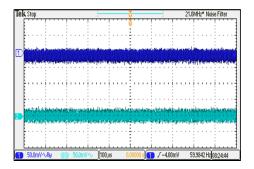


Typical Output Ripple and Noise Vin=Vin nom; Full Load

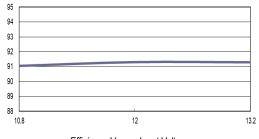
Full Load

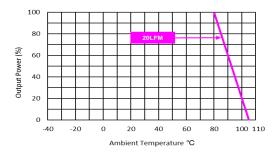

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Date:2025-01-16 Rev:1



Characteristic Curves

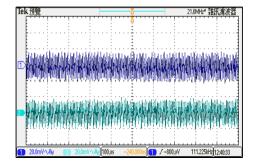

All test conditions are at 25°C The figures are identical for MSU02-12D12

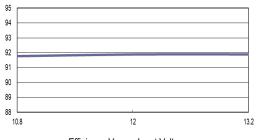


Typical Output Ripple and Noise Vin=Vin nom; Full Load

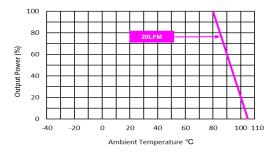
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

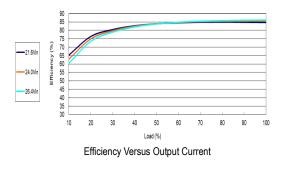

Characteristic Curves

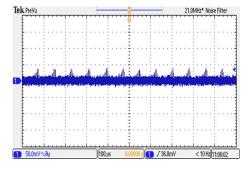
All test conditions are at 25°C The figures are identical for MSU02-12D15

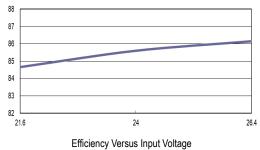


Typical Output Ripple and Noise Vin=Vin nom; Full Load

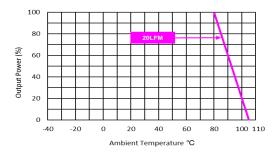
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Date:2025-01-16 Rev:1

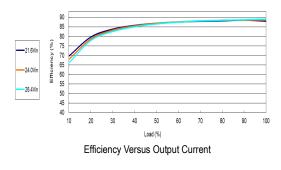

Characteristic Curves

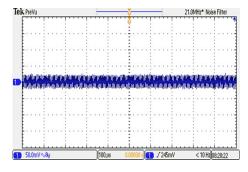
All test conditions are at 25°C The figures are identical for MSU02-24S033

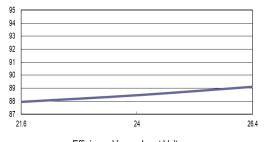


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

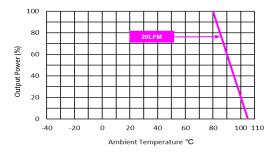
Full Load




Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Characteristic Curves

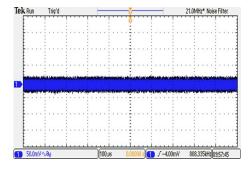
All test conditions are at 25°C The figures are identical for MSU02-24S05

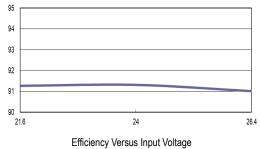


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

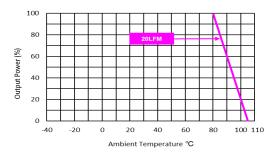
Efficiency Versus Input Voltage Full Load




Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

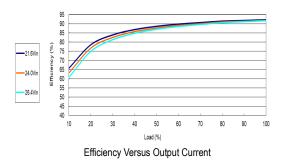

Characteristic Curves

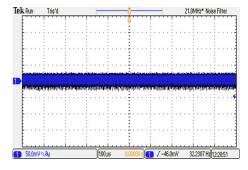
All test conditions are at 25°C The figures are identical for MSU02-24S12

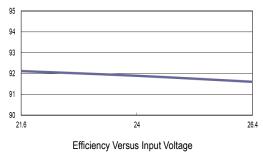


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

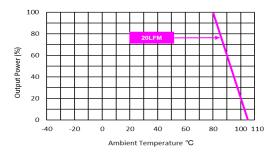
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

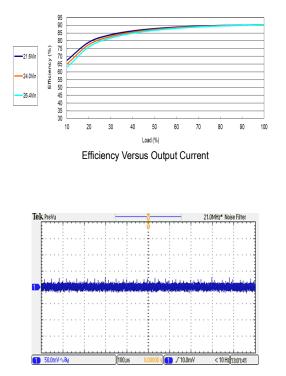

Characteristic Curves

All test conditions are at 25°C The figures are identical for MSU02-24S15

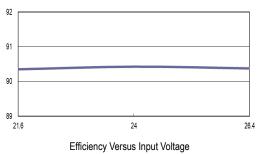


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

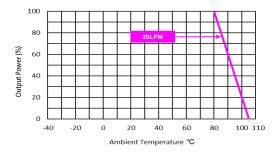
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2025-01-16 Rev:1

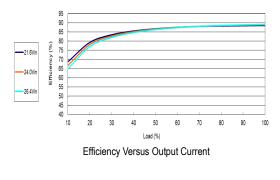


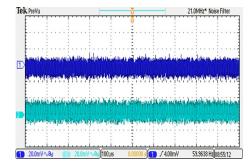
Characteristic Curves

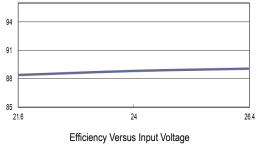

All test conditions are at 25°C The figures are identical for MSU02-24S24

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

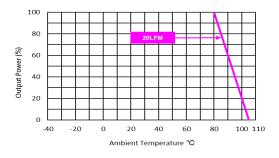
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Date:2025-01-16 Rev:1

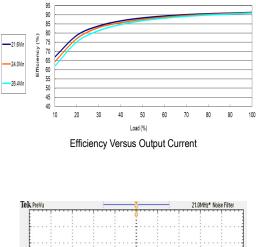

Characteristic Curves

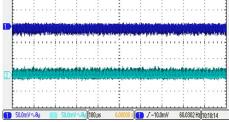
All test conditions are at 25°C The figures are identical for MSU02-24D05

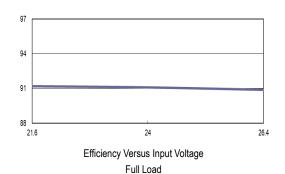


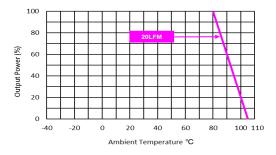
Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

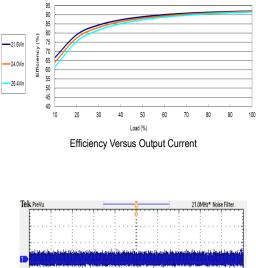

Characteristic Curves

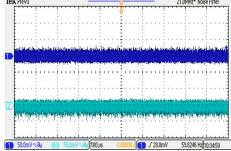

All test conditions are at 25°C The figures are identical for MSU02-24D12

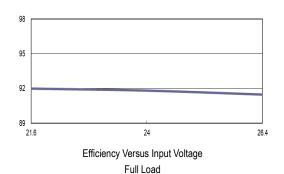
Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

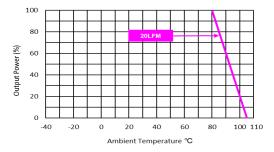
Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2025-01-16 Rev:1

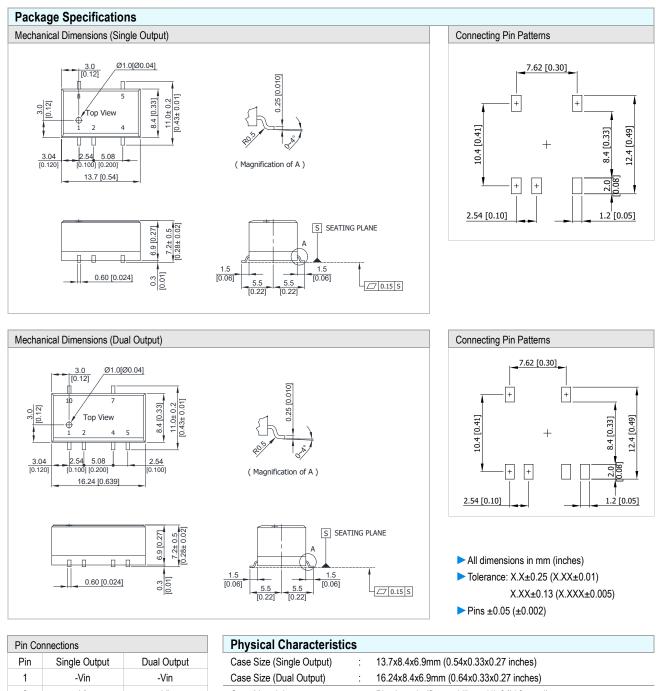

MSU02 Series - EC Notes 27


www.minmaxpower.com


Characteristic Curves


All test conditions are at 25°C The figures are identical for MSU02-24D15

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2025-01-16 Rev:1

Pin	Single Output	Dual Output
1	-Vin	-Vin
2	+Vin	+Vin
3	No Pin	No Pin
4	-Vout	Common
5	+Vout	-Vout
6	No Pin	No Pin
7	No Pin	+Vout
8	NA	No Pin
9		No Pin
10		NA

 Case Size (Single Output)
 :
 13.7x8.4x6.9mm (0.54x0.33x0.27 inches)

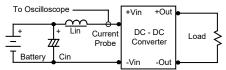
 Case Size (Dual Output)
 :
 16.24x8.4x6.9mm (0.64x0.33x0.27 inches)

 Case Material
 :
 Plastic resin (flammability to UL 94V-0 rated)

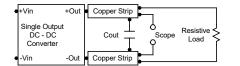
 Pin Material
 :
 Phosphor Bronze

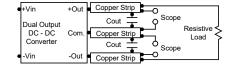
 Weight (Single Output)
 :
 1.6g

 Weight (Dual Output)
 :
 1.78g


NA : Not Available for Electrical Connection

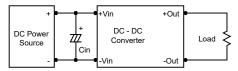
Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

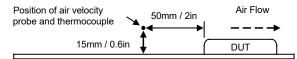

Technical Notes

Maximum Capacitive Load

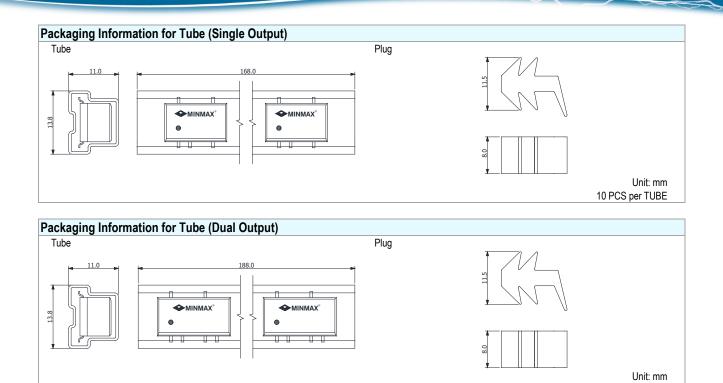
The MSU02 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 33µF maximum capacitive load. The maximum capacitance can be found in the data sheet.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 2.2μ F for the 5V input devices, a 1.0μ F for the 12V input devices and a 0.47μ F for the 24V input devices.

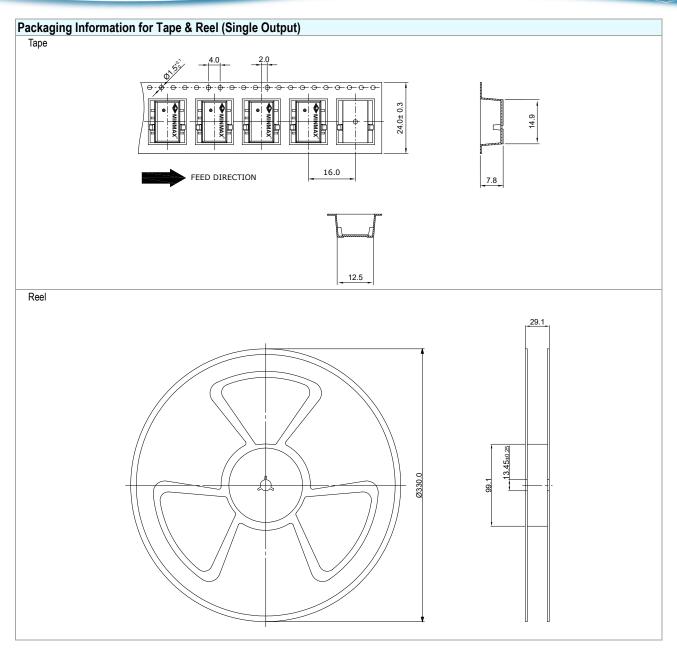

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

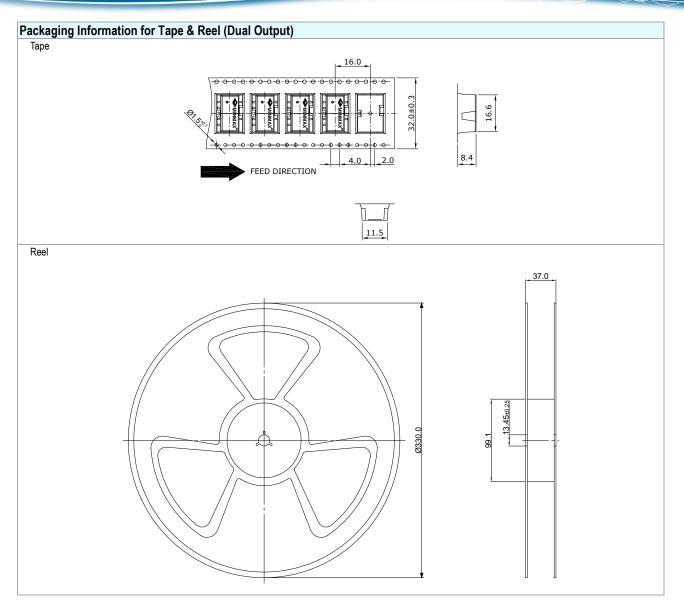
Date:2025-01-16 Rev:1



Date:2025-01-16 Rev:1

MSU02 Series - EC Notes 31

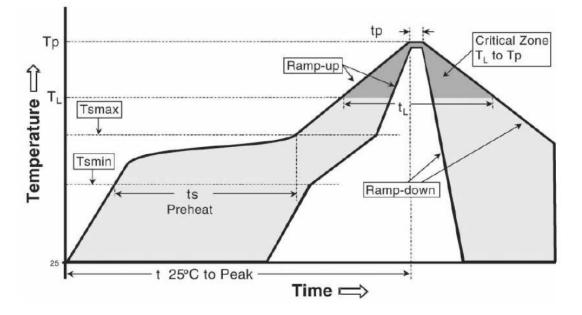
10 PCS per TUBE



Packaging Style	Quantity
With Heatsink Tube	N/A
Tape and Reel to IEC 286-3 Specifications	500

Date:2025-01-16 Rev:1

Packaging Style	Quantity
With Heatsink Tube	N/A
Tape and Reel to IEC 286-3 Specifications	450


Date:2025-01-16 Rev:1

Soldering and Reflow Considerations

Profile	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate(Ts max. To Tp)	3°C/second max.	3°C/second max.
Preheat		
· Temperature Min (Ts _{min.})	100°C	150°C
 Temperature Max (Ts_{max.}) 	150°C	200°C
Time (Ts _{min} to Ts _{max}) (ts)	60~120 seconds	60~180 seconds
Time maintained above:		
· Temperature (T _L)	183°C	217°C
· Time (t∟)	60~150 seconds	60~150 seconds
Peak Temperature (Tp)	See Table 4-1	See Table 4-2
Time within 5°C of actual Peak	10~30 seconds	20~40 seconds
Temperature (tp) ²		
Ramp-down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Note 2: Time within 5°C of actual peak temperature (tp) specified for the reflow profiles is a "supplier" minimum and "user" maximum.

Table 4-1 SnPb Eutectic Process-Classification Temperatures (Tc)

	Volume mm ³	Volume mm ³
Package Thickness	<350	≥350
<2.5mm	235°C	220°C
≥2.5mm	220°C	220°C

Table 4-2 Pb-Free Process-Classification Temperatures (T_c)

	Volume mm ³	Volume mm ³	Volume mm ³	
Package Thickness	<350	350-2000	>2000	
<1.6mm	260°C	260°C	260°C	
1.6mm-2.5mm	260°C	250°C	245°C	
>2.5mm	250°C	245°C	245°C	

Date:2025-01-16 Rev:1

М	S	U	02	-			05				S		033	
	Package Type	Output Regulation	Output Power			nput Vo	oltag	e Rang	e	Outpu	t Quantity	Outp	out Vo	ltage
	SMD-8 (Single)	Unregulated	2 Watt		05:	4.5	~	5.5	VDC	S:	Single	033:	3.3	VDC
	SMD-10 (Dual)				12:	10.8	~	13.2	VDC	D:	Dual	05:	5	VDC
					24:	21.6	~	26.4	VDC			12:	12	VDC
												15:	15	VDC
												24:	24	VDC

MTBF and Reliability

The MTBF of MSU02 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit			
MSU02-05S033	7,044,261				
MSU02-05S05	8,108,024				
MSU02-05S12	8,616,615				
MSU02-05S15	8,326,341				
MSU02-05S24	4,714,145				
MSU02-05D05	5,022,441				
MSU02-05D12	4,957,498				
MSU02-05D15	5,284,575				
MSU02-12S033	6,568,949				
MSU02-12S05	7,345,662				
MSU02-12S12	8,121,508				
MSU02-12S15	8,110,198	Hereit			
MSU02-12S24	4,474,521	Hours			
MSU02-12D05	5,105,779				
MSU02-12D12	4,709,963				
MSU02-12D15	5,196,674				
MSU02-24S033	6,825,192				
MSU02-24S05	7,607,711				
MSU02-24S12 MSU02-24S15 MSU02-24S24	8,121,508				
	7,850,800				
	4,640,664				
MSU02-24D05	4,925,989				
MSU02-24D12	4,709,963				
MSU02-24D15	5,196,674				

Date:2025-01-16 Rev:1