

MSU01 Series EC Note

DC-DC CONVERTER 1W, SMD Package

Features

- Compact Industrial SMD Package
- Unregulated Output Voltage
- I/O Isolation 1500 VDC
- Efficiency up to 91%
- Short Circuit Protection (Hiccup Mode)
- Wide Operating Temperature Range
- Cleaning-washable Process Available (optional)
- Qualified for Lead-free Reflow Solder Process according to IPC/JEDEC J-STD-020D.1

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MINMAX brand new MSU01 series is a compact industrial SMD package DC-DC converter designed for space-constrained applications that require reliable performance. It features unregulated output voltages of 3.3, 5, 12, 15, 24, ±5, ±12, and ±15 VDC, with I/O isolation of 1500 VDC, delivering up to 91% efficiency. The MSU01 series features short-circuit protection (Hiccup Mode). With a wide operating temperature range, it is suitable for harsh industrial environments. Additionally, an optional cleaning-washable process is available, and the product is qualified for lead-free reflow solder processes in accordance with IPC/JEDEC J-STD-020D.1 standards.

The MSU01 series is ideal for various industrial applications such as sensor systems, industrial control equipment, automation systems, and IoT devices where space is limited and reliability is critical. Its compact form factor and robust design make it a perfect fit for demanding industrial applications that require high performance in challenging conditions.

Table of contents

Model Selection Guide	P2	Test Setup	P30
		Technical Notes	
		Packaging Information for Tube (Single Output)	
Output Voltage Tolerance	P3	Packaging Information for Tube (Dual Output)	P31
General Specifications	P3	Packaging Information for Tape & Reel (Single Output)	P32
EMC Specifications	P3	Packaging Information for Tape & Reel (Dual Output)	P33
Environmental Specifications	P3	Soldering and Reflow Considerations	P34
Characteristic Curves	P5	Part Number Structure	P35
Package Specifications	P29	MTBF and Reliability	P35

Date:2025-01-16 Rev:1

Nodel Selection	Guide								
Model	Input	Output	Output	Ing	out	Load	Max. capacitive	Efficiency	
Number	Voltage	Voltage	Current (2)	Cur	rent	Regulation	Load	(typ.)	
	(Range)		Max.	@Max. Load	@No Load			@Max. Load	
	VDC	VDC	mA	mA(typ.)	mA(typ.)	% (max.)	μF	%	
MSU01-05S033		3.3	300	233		7	2200	85	
MSU01-05S05		5	200	227		7	1000	88	
MSU01-05S12		12	84	224		4	180	90	
MSU01-05S15	5	15	67	223	12	4	120	90	
MSU01-05S24	(4.5 ~ 5.5)	24	42	224	12	4	47	90	
MSU01-05D05		±5	±100	230		7	470#	87	
MSU01-05D12		±12	±42	224		4	100#	90	
MSU01-05D15		±15	±33	218		4	68#	91	
MSU01-12S033		3.3	300	98		6	2200	84	
MSU01-12S05		5	200	96		6	1000	87	
MSU01-12S12		12	84	95		4	180	89	
MSU01-12S15	12	15	67	94	7	4	120	89	
MSU01-12S24	(10.8 ~ 13.2)	24	42	96	7	6	47	88	
MSU01-12D05		±5	±100	95			6	470#	88
MSU01-12D12		±12	±42	94			4	100#	90
MSU01-12D15		±15	±33	92		4	68#	90	
MSU01-24S033		3.3	300	51		6	2200	81	
MSU01-24S05		5	200	50		6	1000	84	
MSU01-24S12		12	84	50		4	180	85	
MSU01-24S15	24	15	67	49	5	4	120	86	
MSU01-24S24	(21.6 ~ 26.4)	24	42	50		4	47	85	
MSU01-24D05		±5	±100	51		6	470#	82	
MSU01-24D12		±12	±42	50		4	100#	85	
MSU01-24D15		±15	±33	49		4	68#	85	

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	5V Input Models	4.5	5	5.5	
Input Voltage Range	12V Input Models	12V Input Models 10.8 12		13.2	
	24V Input Models	21.6	24	26.4	VDC
	5V Input Models	-0.7		9	VDC
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18	
	24V Input Models	-0.7		30	
Internal Filter	All Models	Internal Capacitor			

Output Specifications						
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy				±3.0	%Vnom.	
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%	
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%	
Load Regulation	lo=20% to 100%	(Operation a	See Model Se at lower load wi	election Guide Il not damage t	he converter,	
		but	it may not mee	et all specificati	ons)	
Ripple & Noise	0-20 MHz Bandwidth			100	mV _{P-P}	
Temperature Coefficient			±0.01	±0.02	%/°C	
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode)					

Date:2025-01-16 Rev:1

Output Voltage Tolerance Deviation of Vout nom. (%) Deviation of Vout nom. (%) Reasonable Minimum Load Reasonable Minimum Load Min. Typ. Max. Min. Typ. Max. -10 L -10 Output Load Current (%) Output Load Current (%) Output Voltage VS Output Load Current Output Voltage VS Input Voltage Range

General Specifications

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
1/O loolation Voltage	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		40	100	pF
Switching Frequency			240		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	5,013,824			Hours
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1	Level 2			

EMC Specifications

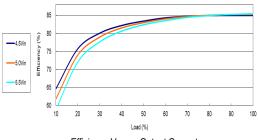
Parameter		Standards & Level Perform					
	Conduction		MPIL of the second second second second				
EMI ₍₅₎	Radiation EN 55032	With external components	Class A				
	EN 55035						
	F0D	Direct discharge	Indirect discharge HCP & VCP				
	ESD	EN 61000-4-2 Air ± 8kV	Contact ± 6kV	A			
	Radiated immunity	EN 61000-4-3 10V/m		Α			
EMS(5)	Fast transient	EN 61000-4-4 ±2kV		А			
	Surge	EN 61000-4-5 ±2kV		А			
	Conducted immunity	EN 61000-4-6 10Vrms		Α			
	PFMF	EN61000-4-8 30A/m for Continuous; 1000A/m for 1 s					

Environmental Specifications			
Parameter	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C
Case Temperature		+105	°C
Storage Temperature Range	-50	+125	°C
Humidity (non condensing)		95	% rel. H
Lead-free Reflow Solder Process IPC/JEDEC J-STD-020D.1			20D.1

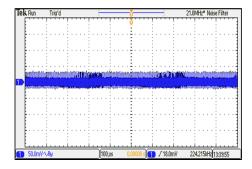
≪> MINMAX[®]

POWER FOR A BETTER FUTURE

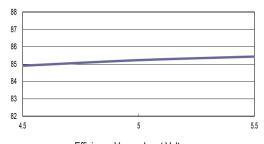
Notes

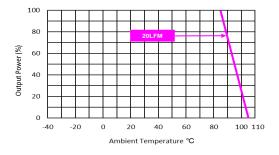

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 3 We recommend to protect the converter by a fast blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- 7 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Date:2025-01-16 Rev:1



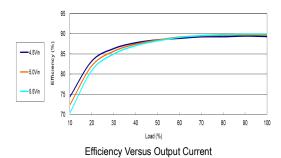
Characteristic Curves

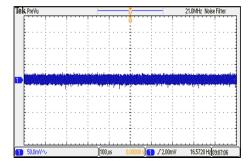

All test conditions are at 25°C The figures are identical for MSU01-05S033

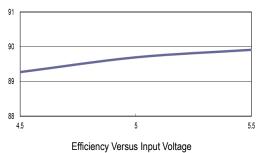

Efficiency Versus Output Current

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

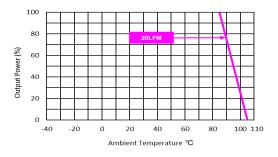
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Date:2025-01-16 Rev:1

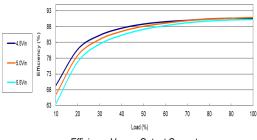

Characteristic Curves

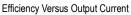
All test conditions are at 25°C The figures are identical for MSU01-05S05

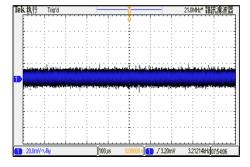


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

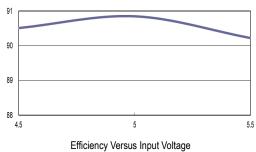
Full Load

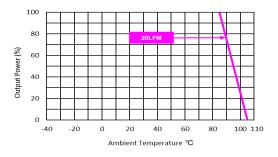

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1



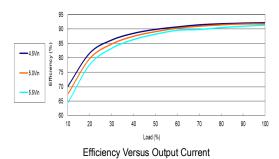
Characteristic Curves

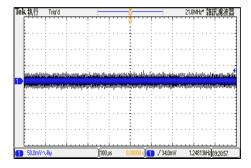

All test conditions are at 25°C The figures are identical for MSU01-05S12

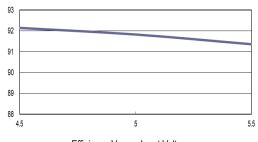


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

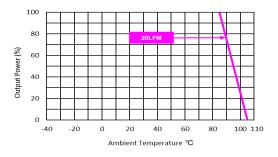
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

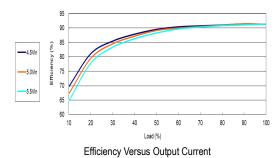

Characteristic Curves

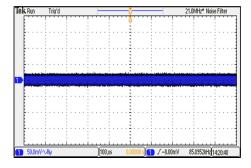
All test conditions are at 25°C The figures are identical for MSU01-05S15

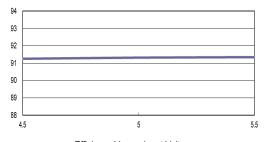


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

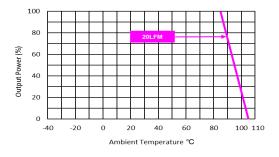
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

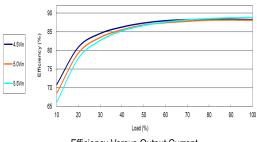

Characteristic Curves

All test conditions are at 25°C The figures are identical for MSU01-05S24

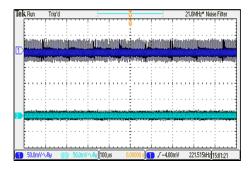


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

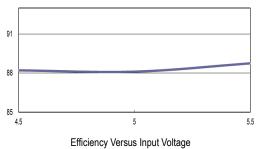
Efficiency Versus Input Voltage Full Load

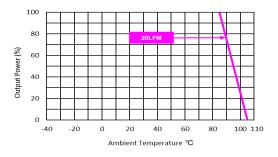

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2025-01-16 Rev:1



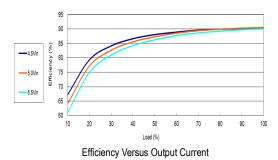
Characteristic Curves

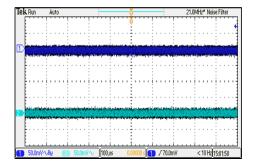

All test conditions are at 25°C The figures are identical for MSU01-05D05

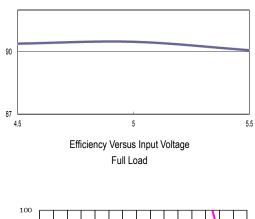

Efficiency Versus Output Current

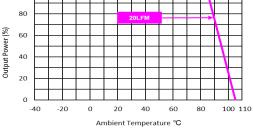
Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

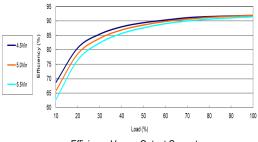

Characteristic Curves


All test conditions are at 25°C The figures are identical for MSU01-05D12

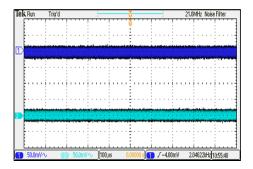
Typical Output Ripple and Noise Vin=Vin nom; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

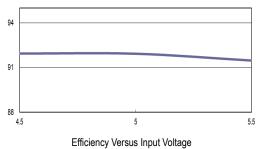
Date:2025-01-16 Rev:1

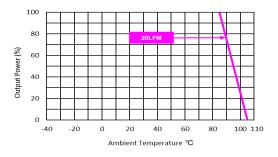

MSU01 Series - EC Notes 11

www.minmaxpower.com



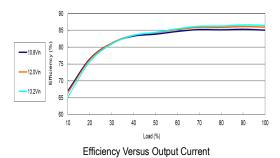
Characteristic Curves

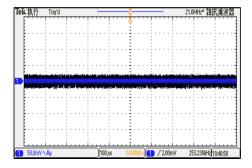

All test conditions are at 25°C The figures are identical for MSU01-05D15

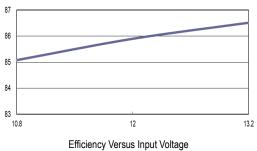

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

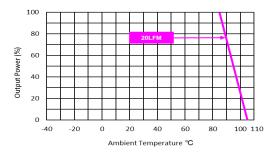
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

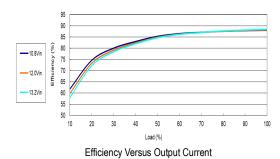

Characteristic Curves

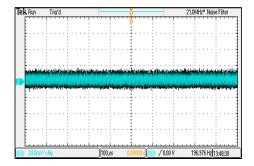
All test conditions are at 25°C The figures are identical for MSU01-12S033

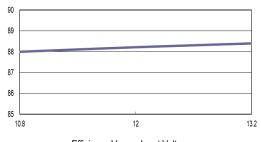


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

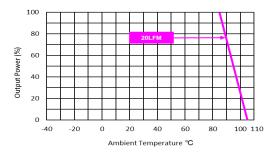
Full Load




Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

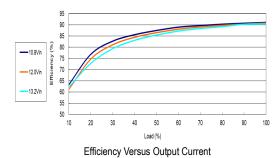

Characteristic Curves

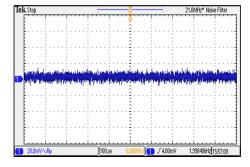
All test conditions are at 25°C The figures are identical for MSU01-12S05

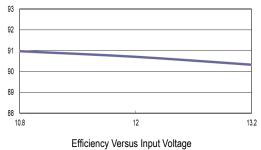


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

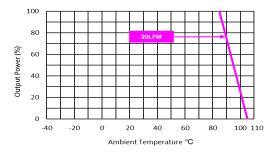
Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

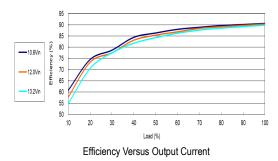

Characteristic Curves

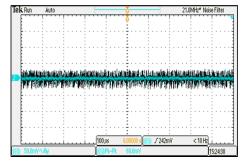
All test conditions are at 25°C The figures are identical for MSU01-12S12

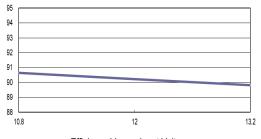


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

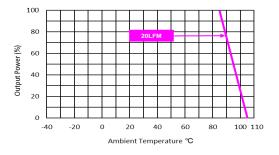
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

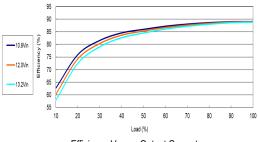

Characteristic Curves

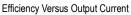
All test conditions are at 25°C The figures are identical for MSU01-12S15

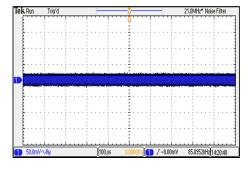


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

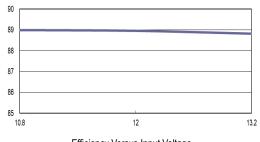
Efficiency Versus Input Voltage Full Load

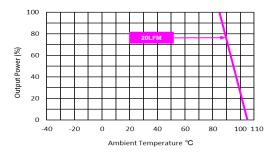

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Date:2025-01-16 Rev:1



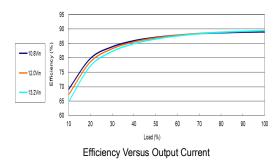
Characteristic Curves

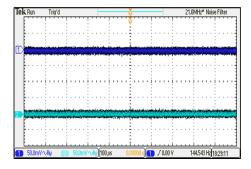

All test conditions are at 25°C The figures are identical for MSU01-12S24

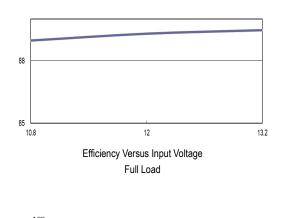


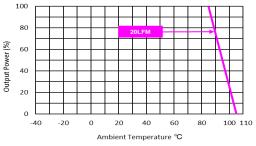
Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

Efficiency Versus Input Voltage Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

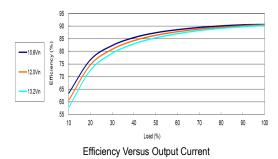

Characteristic Curves

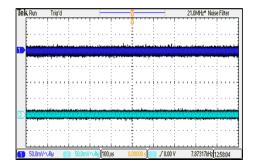

All test conditions are at 25°C The figures are identical for MSU01-12D05

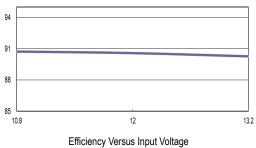
Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

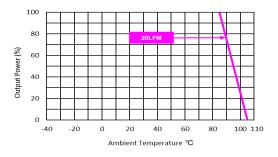
Date:2025-01-16 Rev:1


MSU01 Series - EC Notes 18


www.minmaxpower.com

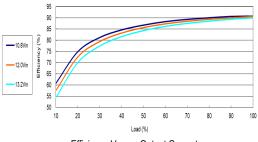

Characteristic Curves

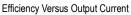
All test conditions are at 25°C The figures are identical for MSU01-12D12

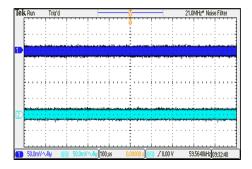


Typical Output Ripple and Noise Vin=Vin nom; Full Load

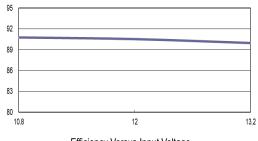
Full Load

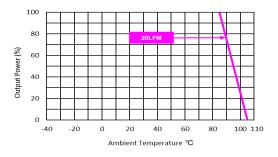

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1



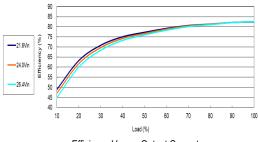
Characteristic Curves

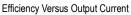

All test conditions are at 25°C The figures are identical for MSU01-12D15

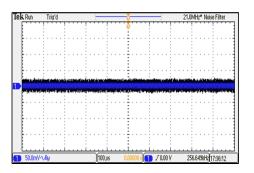


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

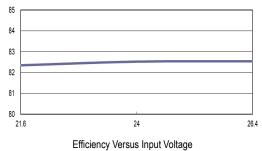
Efficiency Versus Input Voltage Full Load

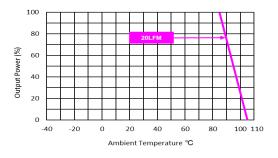

Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$


Date:2025-01-16 Rev:1



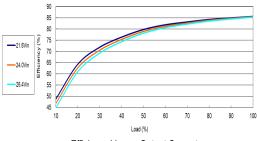
Characteristic Curves

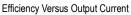

All test conditions are at 25°C The figures are identical for MSU01-24S033

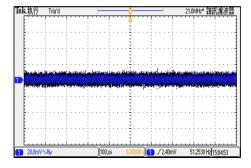


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

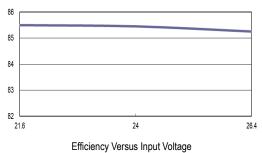
Full Load

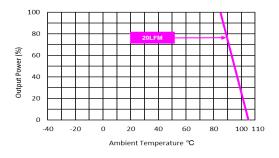

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1



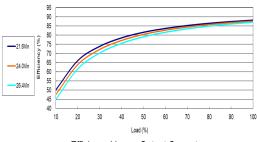
Characteristic Curves

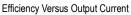

All test conditions are at 25°C The figures are identical for MSU01-24S05

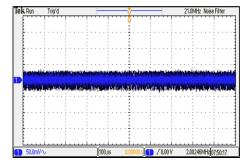


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

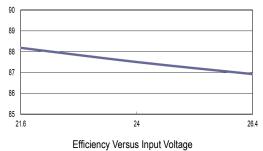
Full Load

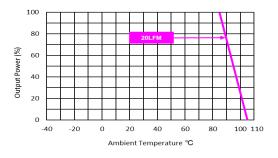



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$



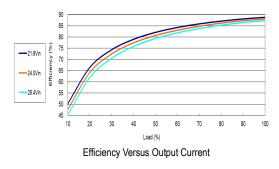
Characteristic Curves


All test conditions are at 25°C The figures are identical for MSU01-24S12

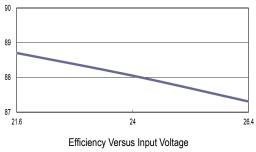


Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

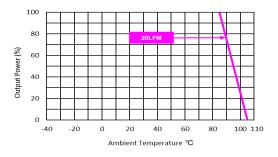
Full Load



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

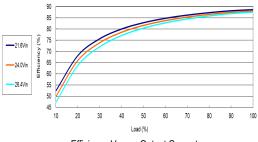

Characteristic Curves

All test conditions are at 25°C The figures are identical for MSU01-24S15



Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

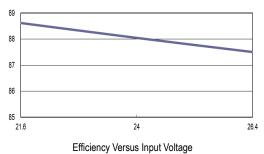
Full Load

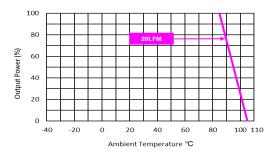

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2025-01-16 Rev:1



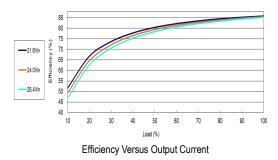
Characteristic Curves

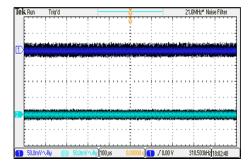

All test conditions are at 25°C The figures are identical for MSU01-24S24

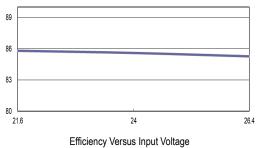

Efficiency Versus Output Current

Typical Output Ripple and Noise V_{in} =V_{in} nom; Full Load

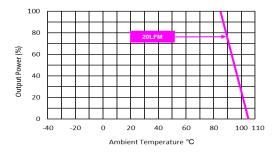
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$


Date:2025-01-16 Rev:1

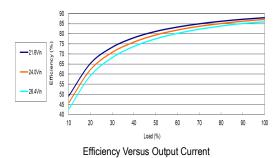

Characteristic Curves

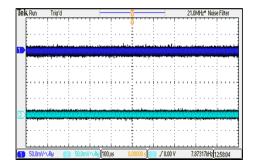
All test conditions are at 25°C The figures are identical for MSU01-24D05

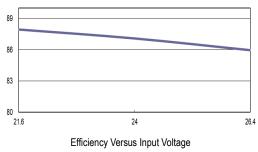


Typical Output Ripple and Noise Vin=Vin nom ; Full Load

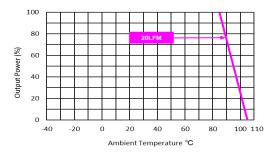
Full Load


Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

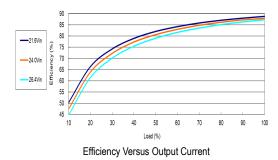

Date:2025-01-16 Rev:1

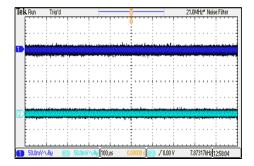

Characteristic Curves

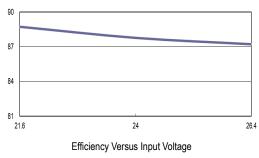
All test conditions are at 25°C The figures are identical for MSU01-24D12



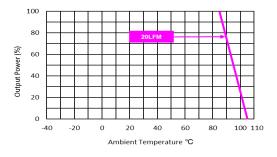
Typical Output Ripple and Noise Vin=Vin nom; Full Load


Derating Output Current Versus Ambient Temperature and Airflow $$V_{\text{in}}$=V_{\text{in nom}}$$

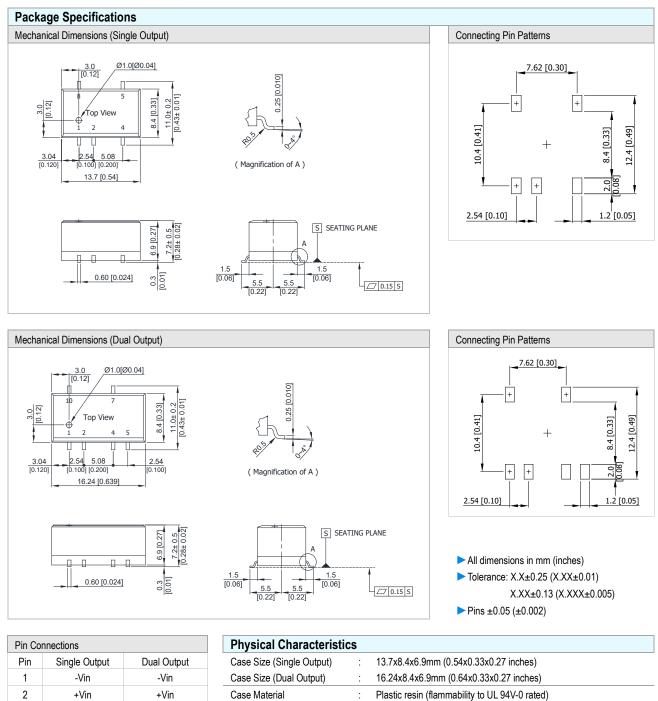

Date:2025-01-16 Rev:1


Characteristic Curves

All test conditions are at 25°C The figures are identical for MSU01-24D15



Typical Output Ripple and Noise Vin=Vin nom ; Full Load



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Date:2025-01-16 Rev:1

Phosphor Bronze

1.61g

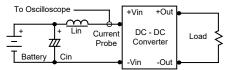
: 1.5g

Pin Material

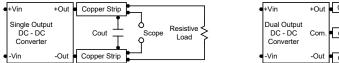
Weight (Single Output)

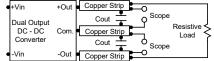
Weight (Dual Output)

Pin	Single Output	Dual Output
1	-Vin	-Vin
2	+Vin	+Vin
3	No Pin	No Pin
4	-Vout	Common
5	+Vout	-Vout
6	No Pin	No Pin
7	No Pin	+Vout
8	NA	No Pin
9		No Pin
10		NA


NA : Not Available for Electrical Connection

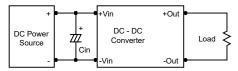
Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

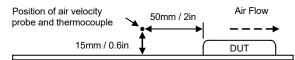

Technical Notes

Maximum Capacitive Load

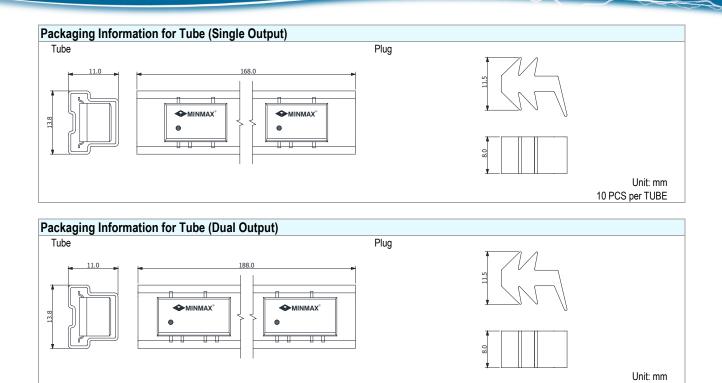
The MSU01 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 33µF maximum capacitive load. The maximum capacitance can be found in the data sheet.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 2.2µF for the 5V input devices, a 1.0μ F for the 12V input devices and a 0.47μ F for the 24V input devices.

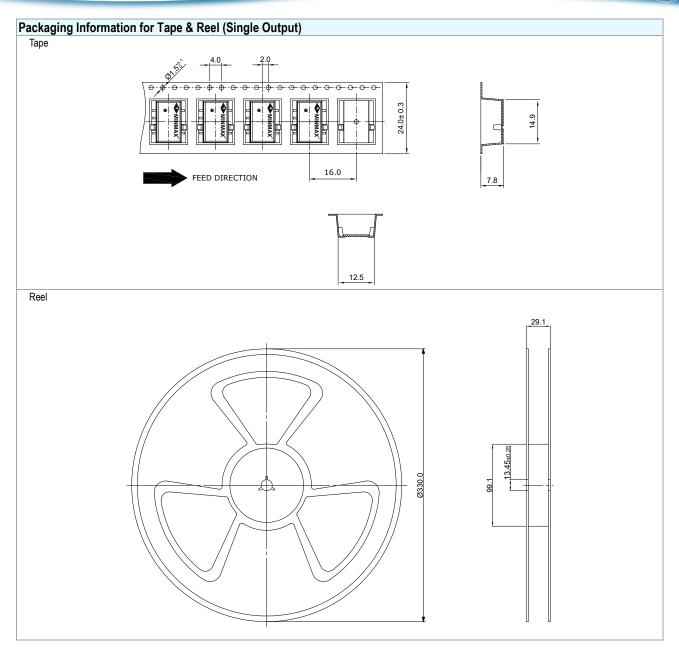

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

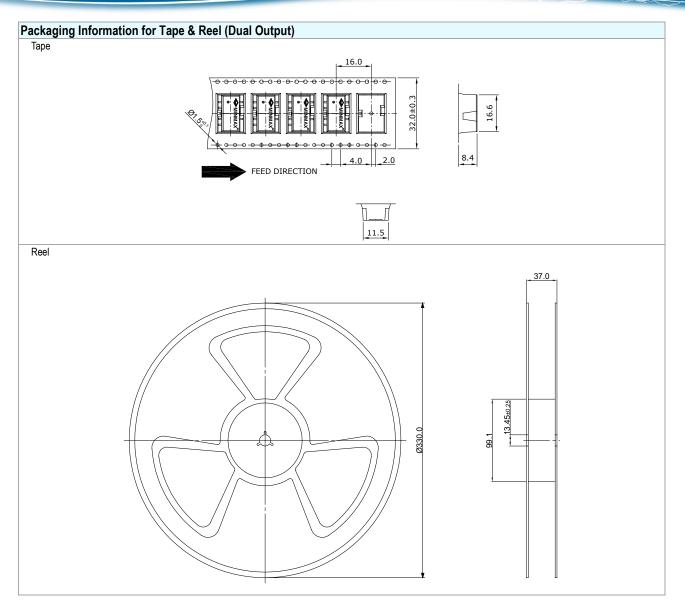
Date:2025-01-16 Rev:1



Date:2025-01-16 Rev:1

MSU01 Series - EC Notes 31

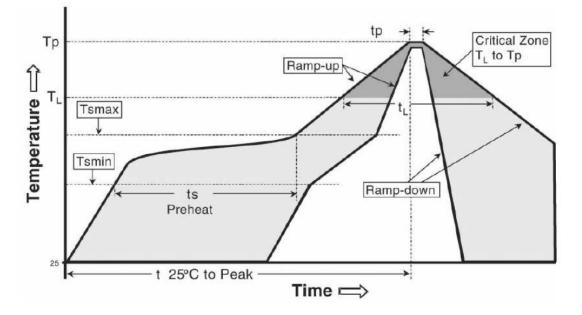
10 PCS per TUBE



Packaging Style	Quantity
With Heatsink Tube	N/A
Tape and Reel to IEC 286-3 Specifications	500

Date:2025-01-16 Rev:1

Packaging Style	Quantity
With Heatsink Tube	N/A
Tape and Reel to IEC 286-3 Specifications	450


Date:2025-01-16 Rev:1

Soldering and Reflow Considerations

Profile	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate(Ts max. To Tp)	3°C/second max.	3°C/second max.
Preheat		
· Temperature Min (Ts _{min.})	100°C	150°C
Temperature Max (Ts _{max.})	150°C	200°C
Time (Ts _{min} to Ts _{max}) (ts)	60~120 seconds	60~180 seconds
Time maintained above:		
· Temperature (T _L)	183°C	217°C
· Time (t∟)	60~150 seconds	60~150 seconds
Peak Temperature (Tp)	See Table 4-1	See Table 4-2
Time within 5°C of actual Peak	10~30 seconds	20~40 seconds
Temperature (tp) ²		
Ramp-down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Note 2: Time within 5°C of actual peak temperature (tp) specified for the reflow profiles is a "supplier" minimum and "user" maximum.

Table 4-1 SnPb Eutectic Process-Classification Temperatures (Tc)

	Volume mm ³	Volume mm ³
Package Thickness	<350	≥350
<2.5mm	235°C	220°C
≥2.5mm	220°C	220°C

Table 4-2 Pb-Free Process-Classification Temperatures (T_c)

	Volume mm ³	Volume mm ³	Volume mm ³		
Package Thickness	<350	350-2000	>2000		
<1.6mm	260°C	260°C	260°C		
1.6mm-2.5mm	260°C	250°C	245°C		
>2.5mm	250°C	245°C	245°C		

Date:2025-01-16 Rev:1

М	S	U	01	-			05				S		033	
	Package Type	Output Regulation	Output Power		I	nput Vo	oltag	e Rang	je	Outpu	t Quantity	Outp	out Vol	tage
	SMD-8 (Single)	Unregulated	1 Watt		05:	4.5	~	5.5	VDC	S:	Single	033:	3.3	VDC
	SMD-10 (Dual)				12:	10.8	~	13.2	VDC	D:	Dual	05:	5	VDC
					24:	21.6	~	26.4	VDC			12:	12	VDC
												15:	15	VDC
												24:	24	VDC

MTBF and Reliability

The MTBF of MSU01 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit			
MSU01-05S033	9,059,869				
MSU01-05S05	9,472,678				
MSU01-05S12	9,542,763				
MSU01-05S15	9,241,466				
MSU01-05S24	5,505,599				
MSU01-05D05	5,940,427				
MSU01-05D12	6,241,863				
MSU01-05D15	6,038,697				
MSU01-12S033	8,030,346				
MSU01-12S05	8,437,498				
MSU01-12S12	8,540,358				
MSU01-12S15	8,292,071	Hours			
MSU01-12S24	5,013,824				
MSU01-12D05	5,105,779				
MSU01-12D12	5,864,447				
MSU01-12D15	5,591,274				
MSU01-24S033	8,214,190				
MSU01-24S05	8,642,569				
MSU01-24S12	8,578,945				
MSU01-24S15	8,455,682				
MSU01-24S24	4,936,138				
MSU01-24D05	5,307,117				
MSU01-24D12	5,080,207				
MSU01-24D15	5,330,172				

Date:2025-01-16 Rev:1