



### **MSCU01M Series EC Note**

DC-DC CONVERTER 1W, Reinforced Insulation, Medical Safety

### Features

- Industrial Standard SMD Package
- Unregulated Output Voltage
- I/O Isolation 4000VAC with Reinforced Insulation, rated for 250Vrms Working Voltage
- Low I/O Leakage Current < 2µA</p>
- Operating Ambient Temp. Range -40°C to 95°C
- Cleaning-washable Process Available (option)
- Qualified for Lead-free Reflow Solder Process According to IPC/JEDEC J-STD-020D.1
- Tape & Reel Package Available
- Short Circuit Protection
- Medical EMC Standard with 4<sup>th</sup> Edition of EMI EN 55011 and EMS EN 60601-1-2 Approved
- Medical Safety with 2xMOPP per 3.2 Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved with CE Marking
- Risk Management Report Acquisition according to ISO 14971

### Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

### **Product Overview**

Introducing the MINMAX MSCU01M series - 1W medical-approved isolated DC-DC converters encased in an enclosed SMD-14 package, purposefully designed for medical applications. With an array of 15 models catering to input voltages of 5, 12, and 24VDC, and offering output voltages of 5, 12, 15, ±12, and ±15VDC, this series ensures versatility to meet the diverse requirements of medical devices.

The MSCU01M series boasts an I/O isolation specified for 4000VAC with reinforced insulation, rated for a steadfast 250Vrms working voltage. Additional features include short circuit protection, low I/O leakage current of 2µA max, and an operating ambient temperature range from -40°C to 95°C without derating. Aligned with the 4th edition medical EMC standard, the series holds medical safety approval with 2xMOPP (Means Of Patient Protection) per the 3.2 Edition of IEC/EN 60601-1 & ANSI/AAMI ES 60601-1.

In adherence to ISO 14971 Medical Device Risk Management, the MSCU01M series undergoes a thorough risk assessment process. This ensures not only compliance with high-performance standards but also alignment with the stringent safety benchmarks outlined in ISO 14971. Elevate your medical devices with the MINMAX MSCU01M series - where advanced technology meets safety, performance, and Medical Device Risk Management Report Acquisition.

### Table of contents

| Model Selection Guide        | P2 | Package Specifications              | P19 |
|------------------------------|----|-------------------------------------|-----|
| Input Specifications         | P2 | Test Setup                          | P20 |
| Output Specifications        | P2 | Technical Notes                     | P20 |
| Output Voltage Tolerance     | P2 | Packaging Information for Tube      | P21 |
| Isolation, Safety Standards  |    |                                     |     |
| General Specifications       | P3 | Soldering and Reflow Considerations | P22 |
| EMC Specifications           | P3 | Part Number Structure               | P23 |
| Environmental Specifications | P3 | MTBF and Reliability                | P23 |
| Characteristic Curves        | P4 |                                     |     |

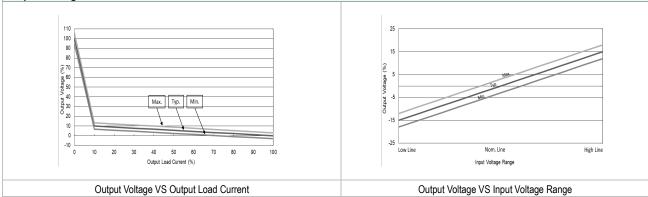
Date:2024-12-23 Rev:6



|  | N | lod | lel S | electi | on G | uide |
|--|---|-----|-------|--------|------|------|
|--|---|-----|-------|--------|------|------|

| Model Selection G | uiue          |         |      |       |            |          |                 |            |
|-------------------|---------------|---------|------|-------|------------|----------|-----------------|------------|
| Model             | Input         | Output  | Out  | tput  | Inj        | out      | Max. capacitive | Efficiency |
| Number            | Voltage       | Voltage | Cur  | rent  | Cur        | rent     | Load            | (typ.)     |
|                   | (Range)       |         | Max. | Min.  | @Max. Load | @No Load |                 | @Max. Load |
|                   | VDC           | VDC     | mA   | mA    | mA(typ.)   | mA(typ.) | μF              | %          |
| MSCU01-05S05M     |               | 5       | 200  | 4     | 263        |          |                 | 76         |
| MSCU01-05S12M     | r.            | 12      | 84   | 1.68  | 252        |          | 220             | 80         |
| MSCU01-05S15M     | 5             | 15      | 68   | 1.36  | 246        | 50       |                 | 83         |
| MSCU01-05D12M     | (4.5 ~ 5.5)   | ±12     | ±42  | ±0.84 | 252        |          | 400#            | 80         |
| MSCU01-05D15M     |               | ±15     | ±33  | ±0.66 | 236        |          | 100#            | 84         |
| MSCU01-12S05M     |               | 5       | 200  | 4     | 110        |          |                 | 76         |
| MSCU01-12S12M     | 10            | 12      | 84   | 1.68  | 106        |          | 220             | 79         |
| MSCU01-12S15M     | 12            | 15      | 68   | 1.36  | 106        | 35       |                 | 80         |
| MSCU01-12D12M     | (10.8 ~ 13.2) | ±12     | ±42  | ±0.84 | 106        |          | 400#            | 79         |
| MSCU01-12D15M     |               | ±15     | ±33  | ±0.66 | 103        |          | 100#            | 80         |
| MSCU01-24S05M     |               | 5       | 200  | 4     | 55         |          |                 | 76         |
| MSCU01-24S12M     |               | 12      | 84   | 1.68  | 53         |          | 220             | 80         |
| MSCU01-24S15M     | 24            | 15      | 68   | 1.36  | 53         | 20       |                 | 80         |
| MSCU01-24D12M     | (21.6 ~ 26.4) | ±12     | ±42  | ±0.84 | 53         |          | 400#            | 80         |
| MSCU01-24D15M     |               | ±15     | ±33  | ±0.66 | 52         |          | 100#            | 80         |

\* Min. Output Current for Lower Load Regulation


# For each output

| Input Specifications              |                  |      |          |           |      |
|-----------------------------------|------------------|------|----------|-----------|------|
| Parameter                         | Model            | Min. | Тур.     | Max.      | Unit |
|                                   | 5V Input Models  | 4.5  | 5        | 5.5       |      |
| Input Voltage Range               | 12V Input Models | 10.8 | 12       | 13.2      |      |
|                                   | 24V Input Models | 21.6 | 24       | 26.4      | VDC  |
|                                   | 5V Input Models  | -0.7 |          | 9         | VDC  |
| Input Surge Voltage (1 sec. max.) | 12V Input Models | -0.7 |          | 18        |      |
|                                   | 24V Input Models | -0.7 |          | 30        |      |
| Input Filter                      | All Models       |      | Internal | Capacitor |      |

### **Output Specifications**

| output opecifications           |                             |               |       |       |                   |
|---------------------------------|-----------------------------|---------------|-------|-------|-------------------|
| Parameter                       | Conditions                  | Min.          | Тур.  | Max.  | Unit              |
| Output Voltage Setting Accuracy |                             |               | ±1.0  | ±3.0  | %Vnom.            |
| Output Voltage Balance          | Dual Output, Balanced Loads |               | ±0.1  | ±1.0  | %                 |
| Line Regulation                 | For Vin Change of 1%        |               | ±1.2  | ±1.5  | %                 |
| Load Regulation                 | Io=10% to 100%              |               |       | ±10   | %                 |
| Ripple & Noise                  | 0-20 MHz Bandwidth          |               |       | 100   | mV <sub>P-P</sub> |
| Temperature Coefficient         |                             |               | ±0.01 | ±0.02 | %/°C              |
| Short Circuit Protection        | Continuous, Autom           | atic Recovery |       |       |                   |

### Output Voltage Tolerance



Date:2024-12-23 Rev:6



| Isolation, Safety Standards |                                                                        |               |             |                |      |
|-----------------------------|------------------------------------------------------------------------|---------------|-------------|----------------|------|
| Parameter                   | Conditions                                                             | Min.          | Тур.        | Max.           | Unit |
| I/O Isolation Voltage       | 60 Seconds<br>Reinforced insulation, rated for 250Vrms working voltage | 4000          |             |                | VAC  |
| Leakage Current             | 240VAC, 60Hz                                                           |               |             | 2              | μA   |
| I/O Isolation Resistance    | 500 VDC                                                                | 10            |             |                | GΩ   |
| I/O Isolation Capacitance   | 100kHz, 1V                                                             |               | 20          |                | pF   |
| Cafet - Chandarda           | ANSI/AAMI ES60601-1, CAN/C                                             | SA-C22.2 No.  | 60601-1     |                |      |
| Safety Standards            | IEC/EN 60601-1 3.2 Ed                                                  | lition 2xMOPP |             |                |      |
| Safety Approvals            | ANSI/AAMI ES60601-1 2xMOPP recognition(UL certified                    | cate), IEC/EN | 60601-1 3.2 | Edition(CB-rep | ort) |

| General Specifications           |                                   |           |      |      |       |
|----------------------------------|-----------------------------------|-----------|------|------|-------|
| Parameter                        | Conditions                        | Min.      | Тур. | Max. | Unit  |
| Switching Frequency              |                                   |           | 55   |      | kHz   |
| MTBF (calculated)                | MIL-HDBK-217F@25°C, Ground Benign | 4,771,507 |      |      | Hours |
| Moisture Sensitivity Level (MSL) | IPC/JEDEC J-STD-020D.1            |           | Lev  | el 2 |       |

#### **EMC Specifications**

| Parameter |                              | Standards & Level  |                             | Performance |
|-----------|------------------------------|--------------------|-----------------------------|-------------|
|           | Conduction                   |                    | With external components    | Class A     |
| EMI(5)    | Radiation                    | EN 55011           | Without external components | Class A     |
|           | EN 60601-1-2 4 <sup>th</sup> |                    |                             |             |
|           | ESD                          | EN 61000-4-2 Air ± | 15kV, Contact ± 8kV         | Α           |
|           | Radiated immunity            | EN 61000           | )-4-3 10V/m                 | A           |
| EMS(5)    | Fast transient               | EN 6100            | 0-4-4 ±2kV                  | Α           |
|           | Surge                        | EN 6100            | 0-4-5 ±1kV                  | Α           |
|           | Conducted immunity           | EN 61000           | -4-6 10Vrms                 | Α           |
|           | PFMF                         | EN 61000           | )-4-8 30A/m                 | A           |

| Environmental Specifications                                   |        |              |          |
|----------------------------------------------------------------|--------|--------------|----------|
| Parameter                                                      | Min.   | Max.         | Unit     |
| Operating Ambient Temperature Range (See Power Derating Curve) | -40    | +95          | °C       |
| Case Temperature                                               |        | +105         | °C       |
| Storage Temperature Range                                      | -50    | +125         | °C       |
| Humidity (non condensing)                                      |        | 95           | % rel. H |
| Lead-free Reflow Solder Process                                | IPC/JE | EDEC J-STD-( | )20D.1   |

#### Notes

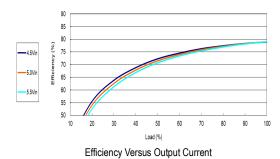
1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.

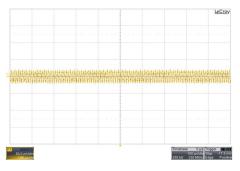
2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.

3 We recommend to protect the converter by a slow blow fuse in the input supply line.

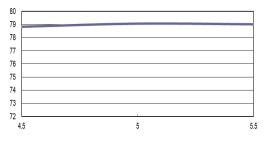
4 Other input and output voltage may be available, please contact MINMAX.

5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.

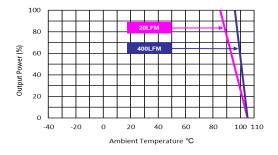

6 Specifications are subject to change without notice.


7 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.




### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-05S05M  $\,$ 



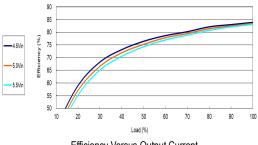


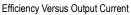

Typical Output Ripple and Noise Vin=Vin nom; Full Load

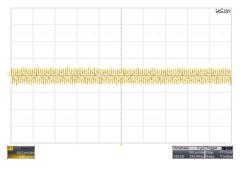


Efficiency Versus Input Voltage Full Load

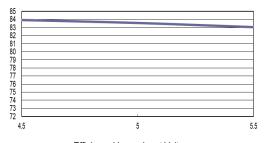



Derating Output Current Versus Ambient Temperature and Airflow  $$V_{\text{in}}$=V_{\text{in nom}}$$ 

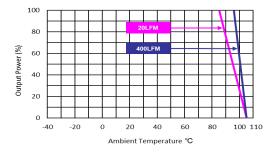

Date:2024-12-23 Rev:6




### Characteristic Curves


All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-05S12M  $\,$ 





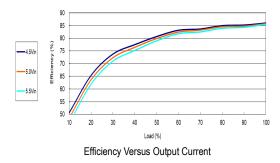


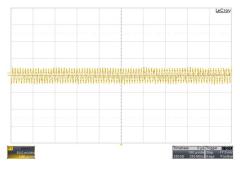

Typical Output Ripple and Noise Vin=Vin nom; Full Load



Efficiency Versus Input Voltage Full Load



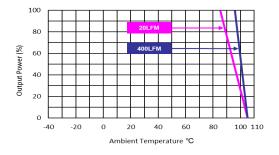

Derating Output Current Versus Ambient Temperature and Airflow Vin=Vin nom


Date:2024-12-23 Rev:6



#### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-05S15M  $\,$ 



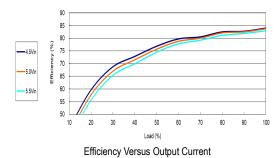


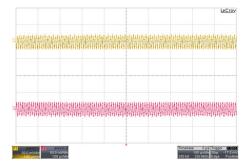

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



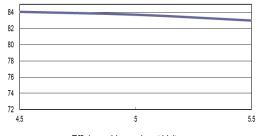
Efficiency Versus Input Voltage Full Load



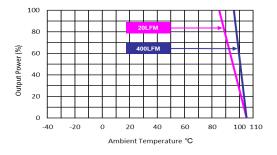

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}}{=}V_{\text{in nom}}$ 


Date:2024-12-23 Rev:6




### **Characteristic Curves**

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-05D12M  $\,$ 



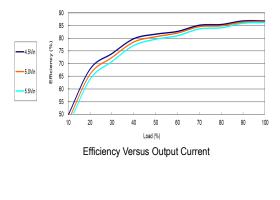


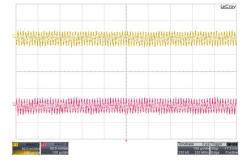

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



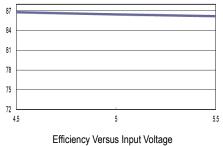
Efficiency Versus Input Voltage Full Load



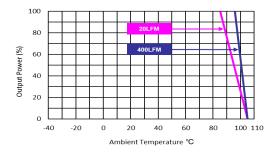

Derating Output Current Versus Ambient Temperature and Airflow  $$V_{\text{in}}$=V_{\text{in nom}}$$ 


Date:2024-12-23 Rev:6




### **Characteristic Curves**

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-05D15M  $\,$ 



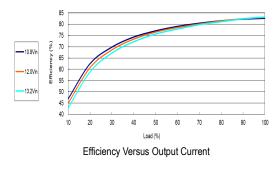


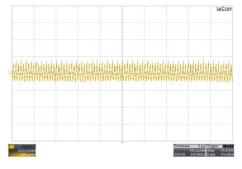

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



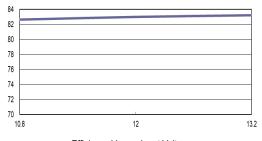
Full Load



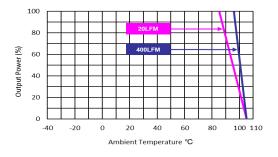

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} {=} V_{\text{in nom}}$ 


Date:2024-12-23 Rev:6




### **Characteristic Curves**

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-12S05M  $\,$ 



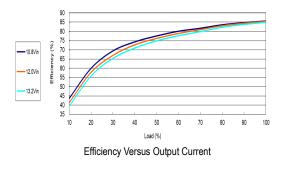


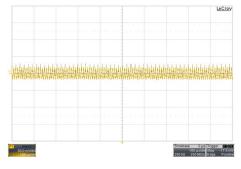

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



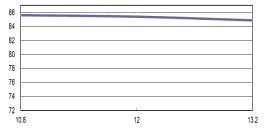
Efficiency Versus Input Voltage Full Load



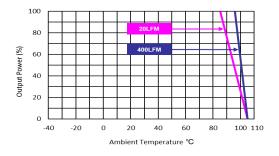

Derating Output Current Versus Ambient Temperature and Airflow  $$V_{\text{in}}$=V_{\text{in nom}}$$ 


Date:2024-12-23 Rev:6




#### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-12S12M  $\,$ 



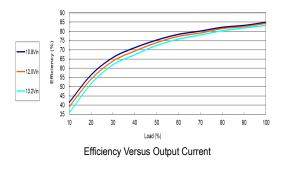


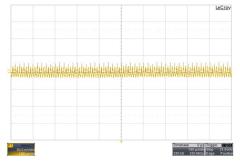

Typical Output Ripple and Noise Vin=Vin nom; Full Load



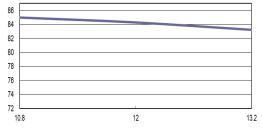
Efficiency Versus Input Voltage Full Load



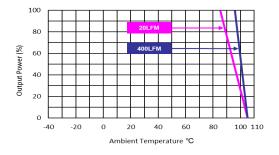

Derating Output Current Versus Ambient Temperature and Airflow  $$V_{\text{in}}$=V_{\text{in nom}}$$ 


Date:2024-12-23 Rev:6




### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-12S15M  $\,$ 



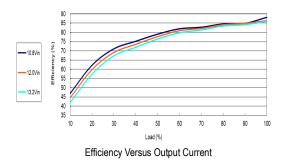


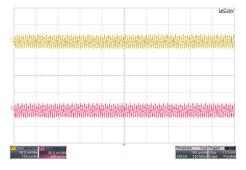

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



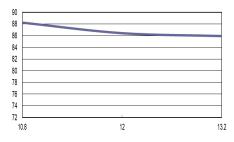
Efficiency Versus Input Voltage Full Load



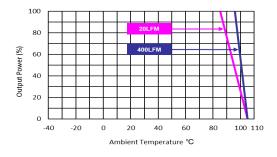

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}}{=}V_{\text{in nom}}$ 


Date:2024-12-23 Rev:6




### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-12D12M  $\,$ 



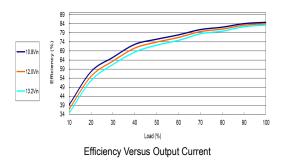


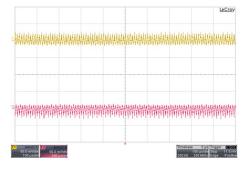

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



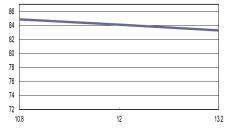
Efficiency Versus Input Voltage Full Load



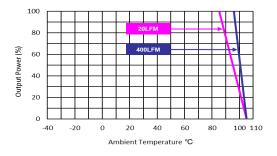

Derating Output Current Versus Ambient Temperature and Airflow  $$V_{\text{in}}$=V_{\text{in nom}}$$ 


Date:2024-12-23 Rev:6




### **Characteristic Curves**

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-12D15M  $\,$ 



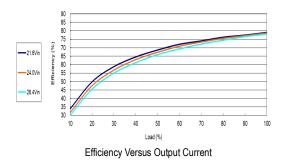


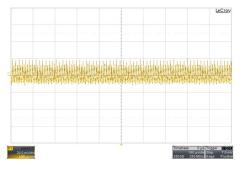

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



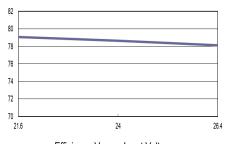
Efficiency Versus Input Voltage Full Load



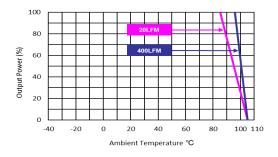

Derating Output Current Versus Ambient Temperature and Airflow  $$V_{\text{in}}$=V_{\text{in nom}}$$ 


Date:2024-12-23 Rev:6




### Characteristic Curves

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-24S05M  $\,$ 



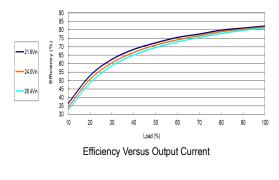


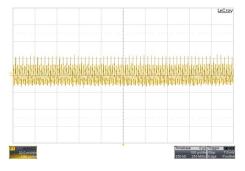

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



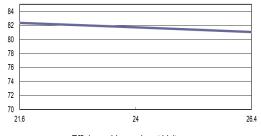
Efficiency Versus Input Voltage Full Load



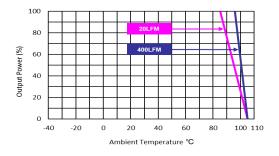

Derating Output Current Versus Ambient Temperature and Airflow  $\label{eq:Vin} V_{\text{in nom}}$ 


Date:2024-12-23 Rev:6




### **Characteristic Curves**

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-24S12M  $\,$ 



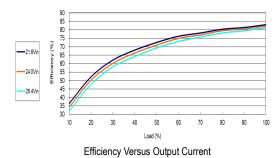


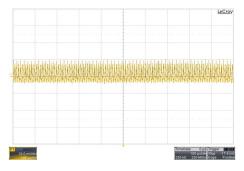

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



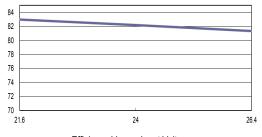
Efficiency Versus Input Voltage Full Load



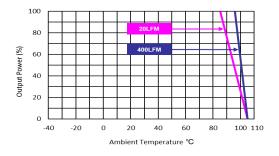

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}}{=}V_{\text{in nom}}$ 


Date:2024-12-23 Rev:6




### **Characteristic Curves**

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-24S15M  $\,$ 



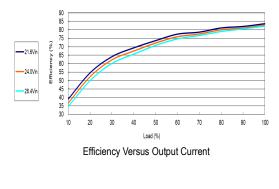


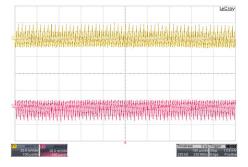

Typical Output Ripple and Noise Vin=Vin nom; Full Load



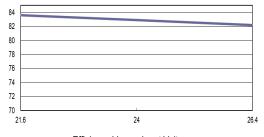
Efficiency Versus Input Voltage Full Load



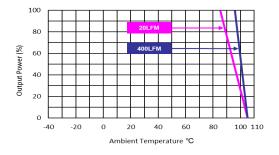

Derating Output Current Versus Ambient Temperature and Airflow  $\label{eq:Vin} V_{\text{in nom}}$ 


Date:2024-12-23 Rev:6




### **Characteristic Curves**

All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-24D12M  $\,$ 



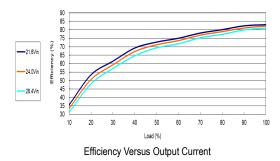


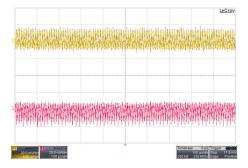

Typical Output Ripple and Noise Vin=Vin nom ; Full Load



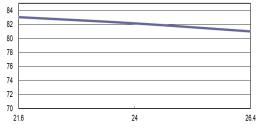
Efficiency Versus Input Voltage Full Load



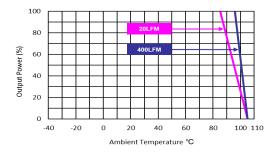

Derating Output Current Versus Ambient Temperature and Airflow  $V_{\text{in}} {=} V_{\text{in nom}}$ 


Date:2024-12-23 Rev:6




### **Characteristic Curves**

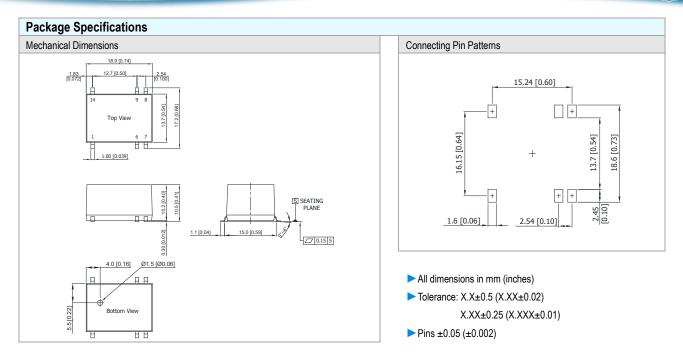
All test conditions are at 25°C  $\,$  The figures are identical for MSCU01-24D15M  $\,$ 






Typical Output Ripple and Noise Vin=Vin nom ; Full Load




Efficiency Versus Input Voltage Full Load



Derating Output Current Versus Ambient Temperature and Airflow  $$V_{\text{in}}$=V_{\text{in nom}}$$ 

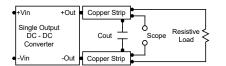
Date:2024-12-23 Rev:6

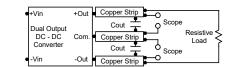




| Pin Conn | ections       |             | Physical Characteristic | CS                                               |
|----------|---------------|-------------|-------------------------|--------------------------------------------------|
| Pin      | Single Output | Dual Output | Case Size               | : 18.9x13.7x10.2 mm (0.74x0.54x0.40 inches)      |
| 1        | -Vin          | -Vin        |                         |                                                  |
| 6        | NC            | Common      | Case Material           | : Plastic resin (flammability to UL 94V-0 rated) |
| 7        | NC            | -Vout       |                         |                                                  |
| 8        | +Vout         | +Vout       | Pin Material            | : Phosphor Bronze                                |
| 9        | -Vout         | Common      |                         |                                                  |
| 14       | +Vin          | +Vin        | Weight                  | : 4.1g                                           |

NC: No Connection


Date:2024-12-23 Rev:6



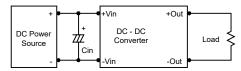

#### **Test Setup**

#### Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout.. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.






#### **Technical Notes**

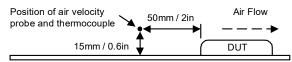
#### Maximum Capacitive Load

The MSCU01M series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 100µF maximum capacitive load for dual outputs and 220µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

#### Input Source Impedance

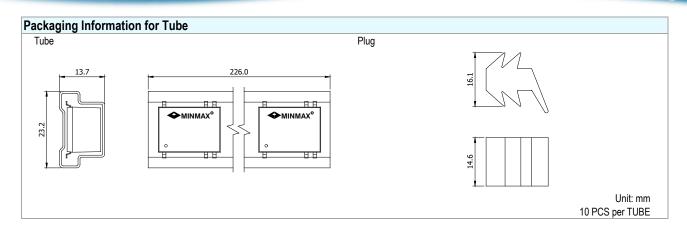
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR <  $1.0\Omega$  at 100 kHz) capacitor of a 2.2µF for the 5V input devices, a  $1.0\mu$ F for the 12V input devices and a  $0.47\mu$ F for the 24V input devices.

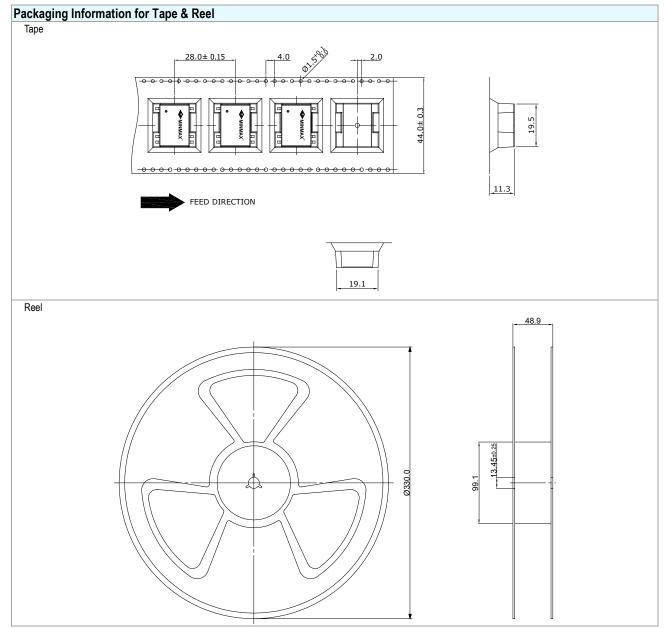



#### **Output Ripple Reduction**

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.




#### Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.



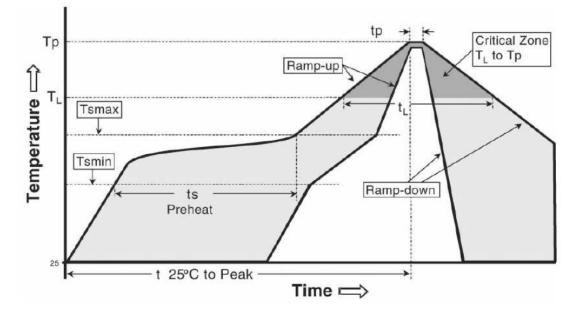
Date:2024-12-23 Rev:6







| Packaging Style                           | Quantity |
|-------------------------------------------|----------|
| With Heatsink Tube                        | N/A      |
| Tape and Reel to IEC 286-3 Specifications | 200      |


Date:2024-12-23 Rev:6

### Soldering and Reflow Considerations

| Profile                                             | Sn-Pb Eutectic Assembly | Pb-Free Assembly |
|-----------------------------------------------------|-------------------------|------------------|
| Average ramp-up rate(Ts max. To Tp)                 | 3°C/second max.         | 3°C/second max.  |
| Preheat                                             |                         |                  |
| · Temperature Min (Ts <sub>min.</sub> )             | 100°C                   | 150°C            |
| Temperature Max (Ts <sub>max.</sub> )               | 150°C                   | 200°C            |
| Time (Ts <sub>min</sub> to Ts <sub>max</sub> ) (ts) | 60~120 seconds          | 60~180 seconds   |
| Time maintained above:                              |                         |                  |
| · Temperature (T <sub>L</sub> )                     | 183°C                   | 217°C            |
| · Time (t∟)                                         | 60~150 seconds          | 60~150 seconds   |
| Peak Temperature (Tp)                               | See Table 4-1           | See Table 4-2    |
| Time within 5°C of actual Peak                      | 10~30 seconds           | 20~40 seconds    |
| Temperature (tp) <sup>2</sup>                       |                         |                  |
| Ramp-down Rate                                      | 6°C/second max.         | 6°C/second max.  |
| Time 25°C to Peak Temperature                       | 6 minutes max.          | 8 minutes max.   |

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Note 2: Time within 5°C of actual peak temperature (tp) specified for the reflow profiles is a "supplier" minimum and "user" maximum.



### Table 4-1 SnPb Eutectic Process-Classification Temperatures (Tc)

|                   | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> |
|-------------------|------------------------|------------------------|
| Package Thickness | <350                   | ≥350                   |
| <2.5mm            | 235°C                  | 220°C                  |
| ≥2.5mm            | 220°C                  | 220°C                  |

### Table 4-2 Pb-Free Process-Classification Temperatures (T<sub>c</sub>)

|                   | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> | Volume mm <sup>3</sup> |  |
|-------------------|------------------------|------------------------|------------------------|--|
| Package Thickness | <350                   | 350-2000               | >2000                  |  |
| <1.6mm            | 260°C                  | 260°C                  | 260°C                  |  |
| 1.6mm-2.5mm       | 260°C                  | 250°C                  | 245°C                  |  |
| >2.5mm 250°C      |                        | 245°C                  | 245°C                  |  |

Date:2024-12-23 Rev:6

| Part N | Number Struct          | ture                             |                        |   |            |                |            |               |            |             |                       |            |             |              |                        |
|--------|------------------------|----------------------------------|------------------------|---|------------|----------------|------------|---------------|------------|-------------|-----------------------|------------|-------------|--------------|------------------------|
| M      | SC                     | U                                | 01                     | • |            |                | 05         |               |            |             | S                     |            | 05          |              | М                      |
|        | Package Type<br>SMD-14 | Output Regulation<br>Unregulated | Output Power<br>1 Watt |   | 05:        | nput Vo<br>4.5 | oltag<br>~ | e Rang<br>5.5 | le<br>VDC  | Outpu<br>S: | It Quantity<br>Single | Out<br>05: | put Vo<br>5 | ltage<br>VDC | Application<br>Medical |
|        |                        |                                  |                        |   | 12:<br>24: | 10.8<br>21.6   | ~ ~        | 13.2<br>26.4  | VDC<br>VDC | D:          | Dual                  | 12:<br>15: | 12<br>15    | VDC<br>VDC   | L                      |

### MTBF and Reliability

The MTBF of MSCU01M series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

| Model         | MTBF      | Unit  |  |
|---------------|-----------|-------|--|
| MSCU01-05S05M | 4,774,882 |       |  |
| MSCU01-05S12M | 5,042,214 |       |  |
| MSCU01-05S15M | 5,239,310 |       |  |
| MSCU01-05D12M | 5,042,214 |       |  |
| MSCU01-05D15M | 5,303,730 |       |  |
| MSCU01-12S05M | 4,771,507 |       |  |
| MSCU01-12S12M | 4,974,054 |       |  |
| MSCU01-12S15M | 5,039,132 | Hours |  |
| MSCU01-12D12M | 4,974,054 |       |  |
| MSCU01-12D15M | 5,039,132 |       |  |
| MSCU01-24S05M | 4,774,937 |       |  |
| MSCU01-24S12M | 5,042,198 |       |  |
| MSCU01-24S15M | 5,040,895 |       |  |
| MSCU01-24D12M | 5,042,198 |       |  |
| MSCU01-24D15M | 5,040,895 |       |  |