

MOWI20C Series EC Note

DC-DC Power Module 20W

Features

- ► Fully Encapsulated Plastic Case for Chassis and DIN-Rail Mounting Version
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► Excellent Efficiency up to 91%
- ► I/O Isolation 2500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +90°C
- ► Under-voltage, Overload/Voltage and Short Circuit Protection
- ► No Min. Load Requirement
- ► Remote On/Off Control
- ► Conducted EMI EN 55032 Class A Approved
- ► EMC Immunity EN 61000-4-2,3,4,5,6,8 Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- ➤ Computer equipment
- ► Communications equipment

Product Overview

The MINMAX MOWI20C series is a range of regulated DC-DC converter modules with ultra-wide 4:1 input voltage ranges. The product comes in a fully encapsulated module with the screw terminal block and it's suitable for chassis or DIN-Rail mounting which easy to install. Featuring an extended operating temperature range from -40°C to +90°C, EMC compliance to EN 61000-6-1 standard these modules have been designed particularly for industrial applications.

Table of contents

Model Selection GuideP2	Characteristic Curves
Input SpecificationsP2	Package Specifications P12
Remote On/Off Control P2	P13
Output SpecificationsP2	P13 Technical Notes
General SpecificationsP3	Part Number Structure P14
EMC SpecificationsP3	MTBF and ReliabilityP14
Environmental Specifications P3	3

Date:2024-11-01 Rev:6

MOWI20C Series - EC Notes 1

Model Selection G	uide							
Model	Input	Output	Output	Input		Max. capacitive	Efficiency	
Number	Voltage	Voltage	Current	Cur	rent	Load	(typ.)	
	(Range)		Max.	@ Max. Load	@ No Load		@Max. Load	
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%	
MOWI20-24S051C		5.1	4000	944	70	6800	90	
MOWI20-24S12C	24	12	1670	918	70	1160	91	
MOWI20-24S24C	(9 ~ 36)	24	835	918	70	300	91	
MOWI20-24S48C		48	420	944	70	75	89	
MOWI20-48S051C		5.1	4000	472	35	6800	90	
MOWI20-48S12C	48	12	1670	459	35	1160	91	
MOWI20-48S24C	(18 ~ 75)	24	835	459	35	300	91	
MOWI20-48S48C		48	420	472	35	75	89	

Input Specific	ations					
	Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (100 ms max.)		24V Input Models	-0.7		50	
		48V Input Models	-0.7		100	VDC
0		24V Input Models			9	
Start-Up Threshold Voltage	48V Input Models			18	VDC	
Under Voltage Shutdown		24V Input Models		7.5		
		48V Input Models		16		
Olaskilla Tara	Power Up	New York March 10 control Destrict and and			30	ms
Start Up Time	Remote On/Off	Nominal Vin and Constant Resistive Load			30	ms
Input Filter		All Models	Internal Pi Type			

Remote On/Off Control							
Parameter	Conditions Min. Typ. Max.						
Converter On	3.5V ~ 12V or Open Circuit						
Converter Off	0V ~ 1.2V or Short Circuit						
Control Input Current (On)	Vctrl = 5.0V 0.5				mA		
Control Input Current (Off)	Vctrl = 0V			-0.5	mA		
Control Common	Referenced to Negative Input						
Standby Input Current	Nominal Vin		3		mA		

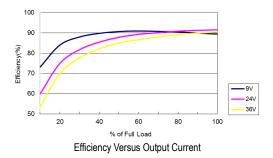
Output Specifications							
Parameter	Cor	nditions / Model	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy				±2.0		%Vnom.	
Line Regulation	Vin=Min.	to Max. @Full Load		±0.5		%	
Load Regulation	lo	=0% to 100%		±0.5		%	
Minimum Load		No minimum Load Requirement					
Ripple & Noise		5.1V Output Models			100	mV _{P-P}	
	0-20MHz Bandwidth	12V & 24V Output Models			150	mV _{P-P}	
		48V Output Models			200	mV _{P-P}	
Transient Recovery Time	050/ 1	Ol Ol		250		μS	
Transient Response Deviation	25% LC	pad Step Change ₍₂₎		±3	±5	%	
Over Voltage Protection	Zer	er diode clamp		120		% of Vo	
Temperature Coefficient				±0.02		%/°C	
Over Load Protection		Hiccup		150		%	
Short Circuit Protection		Continuous, Automatic Recovery (Hiccup Mode 0.25Hz typ.)					

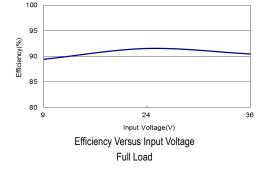
Date:2024-11-01 Rev:6

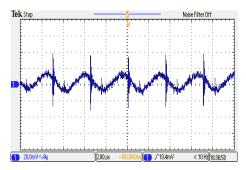
General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage	60 Seconds	2500			VDC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V			2200	pF	
Switching Frequency			285		kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign 775,200 Hours					
Safety Approvals	UL/cUL 62368-1/60950-1 recognition(UL ce	UL/cUL 62368-1/60950-1 recognition(UL certificate), IEC/EN 62368-1/60950-1(CB-report)				

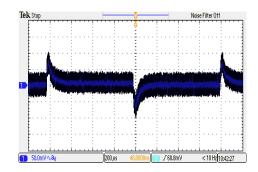
EMC Specifications						
Parameter		Standards & Level				
EMI ₍₅₎	Conduction	EN 55020	Without external components	Class A		
	Radiation	EN 55032	With external components	Class A		
	EN 55035	EN 55035				
	ESD	EN 61000-4-2 A	EN 61000-4-2 Air ± 8kV , Contact ± 4kV			
	Radiated immunity	EN 61000-4-3 10V/m		A		
EMS	Fast transient	EN 61000-4-4 ±2kV		Α		
	Surge	EN 61000-4-5 ±2kV		A		
	Conducted immunity	EN 61000-4-6 10Vrms		Α		
	PFMF	EN 61000-4-8 30 A/m for Continuous		A		

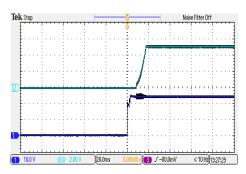
Environmental Specifications				
Parameter	Conditions / Model	Min.	Max.	Unit
Operating Ambient Temperature Range	MOWI20-24S12C, 24S24C MOWI20-48S12C, 48S24C	40	+87	°C
Nominal Vin, Load 100% Inom.	MOWI20-24S051C, 48S051C	-40	+86	
(for Power Derating see relative Derating Curves)	MOWI20-24S48C, 48S48C		+85	
	20LFM Convection	3.9		°C/W
The amend the condenses	100LFM Convection	3.3		°C/W
Thermal Impedance	200LFM Convection	3.1		°C/W
	400LFM Convection	2.5		°C/W
Case Temperature			+95	°C
Storage Temperature Range		-50	+125	°C
Humidity (non condensing)			95	% rel. H

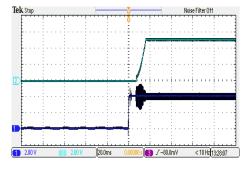

Notes

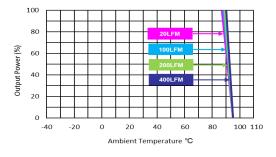

- Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- The external components might be required to meet EMI standard for some of test items. Please contact MINMAX for the solution in detail. 5
- Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.


Date:2024-11-01 Rev:6

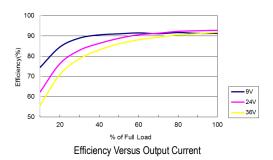

All test conditions are at 25°C The figures are identical for MOWI20-24S051C

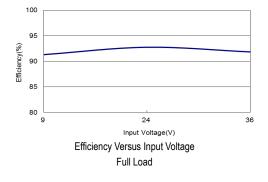


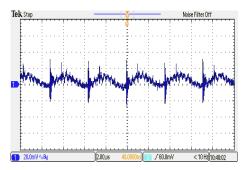

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

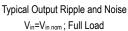

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

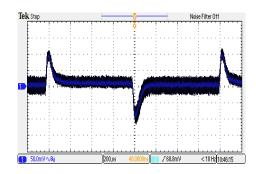
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

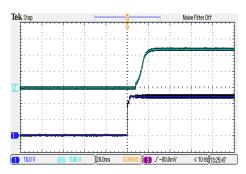

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

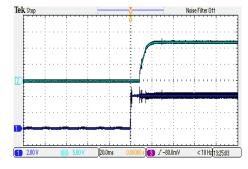


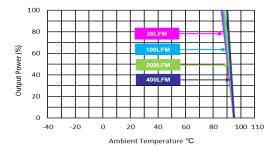

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



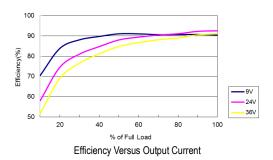

All test conditions are at 25°C The figures are identical for MOWI20-24S12C

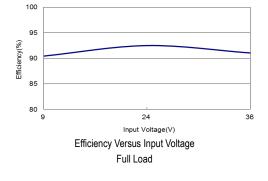


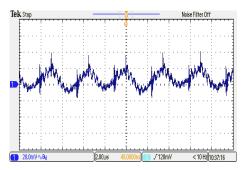


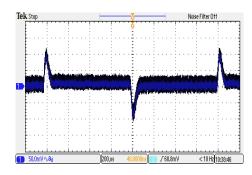

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

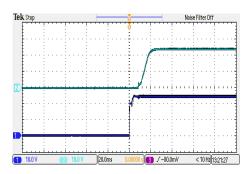
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

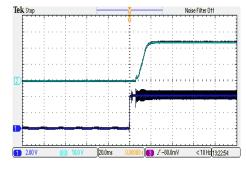

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

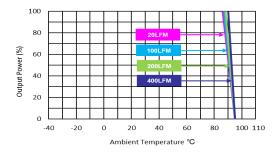



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$

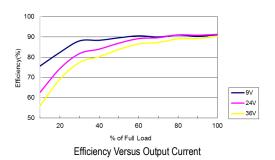

All test conditions are at 25°C The figures are identical for MOWI20-24S24C

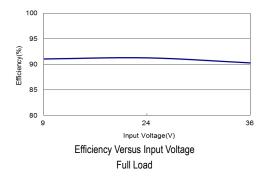


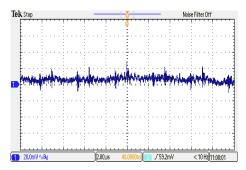

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

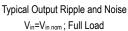

Transient Response to Dynamic Load Change from 100% to 75% of Full Load; Vin=Vin nom

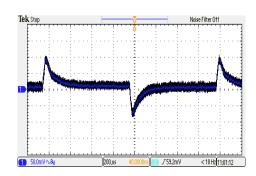
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

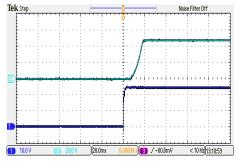

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

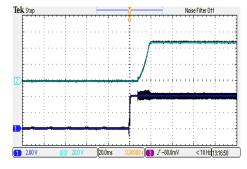


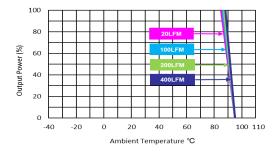

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



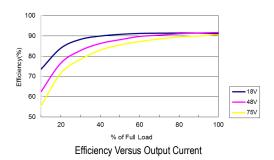

All test conditions are at 25°C The figures are identical for MOWI20-24S48C

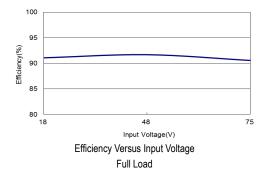


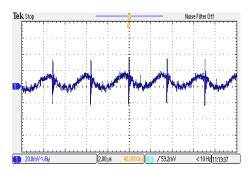


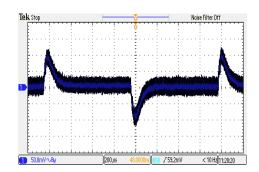

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\ nom}$

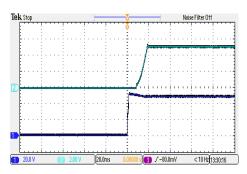
Typical Input Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

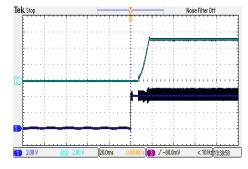

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

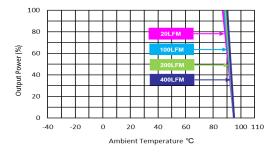



Derating Output Current Versus Ambient Temperature and Airflow V_{in}=V_{in nom}

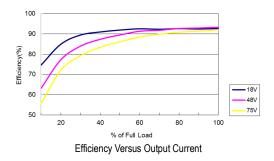

All test conditions are at 25°C The figures are identical for MOWI20-48S051C

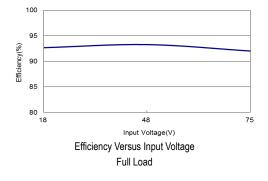



Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,\text{Full Load}$

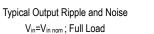

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

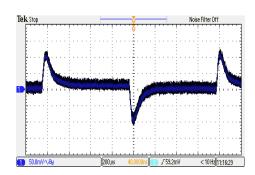
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

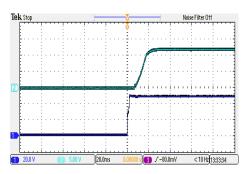

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

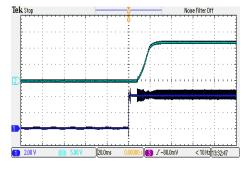


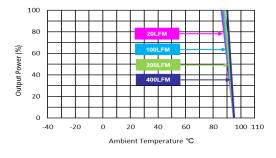
Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \! = \! V_{\text{in nom}}$



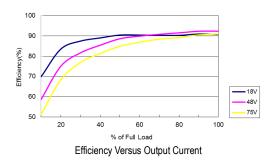

All test conditions are at 25°C The figures are identical for MOWI20-48S12C

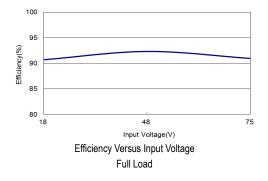


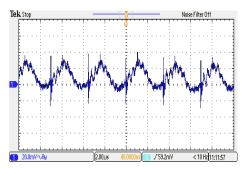


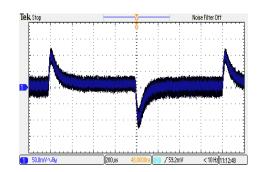

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

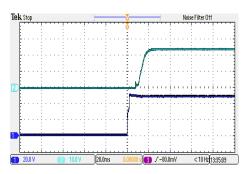
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

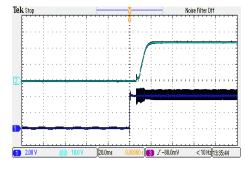

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

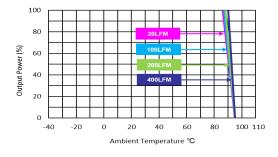



Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

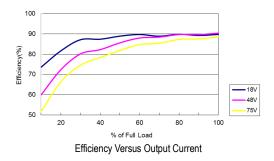

All test conditions are at 25°C The figures are identical for MOWI20-48S24C

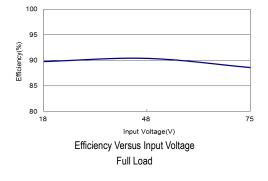


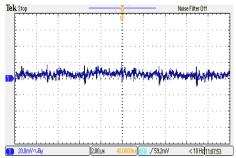

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

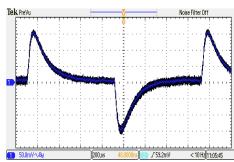
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}} \; ; \; \text{Full Load} \;$

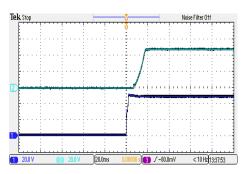

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$



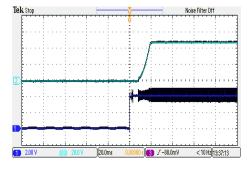

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

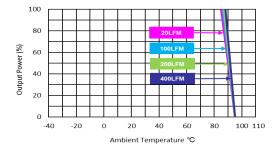
All test conditions are at 25°C The figures are identical for MOWI20-48S48C



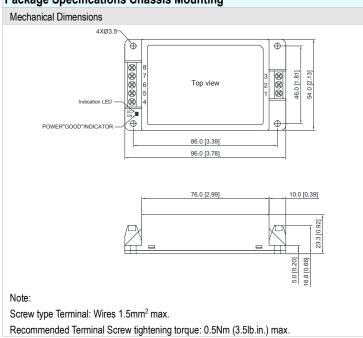


Typical Output Ripple and Noise


V_{in}=V_{in nom}; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}\text{ ; Full Load}$

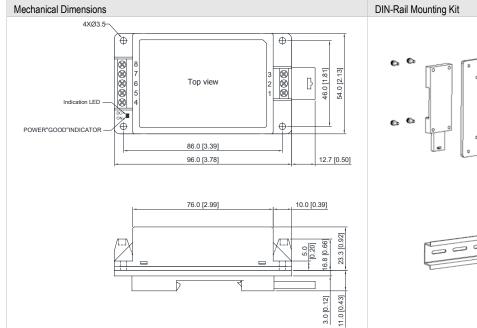

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}} \text{ ; Full Load}$

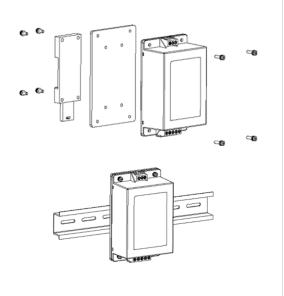
Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} = V_{\text{in nom}}$

Package Specifications Chassis Mounting

Connections	
Pin	Function
1	Remote On/Off
2	-Vin
3	+Vin
4	NC
5	-Vout
6	NC
7	+Vout
8	NC

NC: No Connection


- ► All dimensions in mm (inches)
- ► Tolerance: ±0.5 (±0.02)


Physical Characteristics

Case Size : 96.0x54.0x23.3mm (3.78x2.13x0.92 inches)
Case Material : Plastic resin (flammability to UL 94V-0 rated)

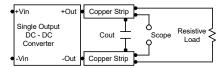
Weight : 107g

Package Specifications with DIN Rail Mounting Bracket (order code AC-DIN-01)

Physical Characteristics

Case Size : 96.0x54.0x23.3mm (3.78x2.13x0.92 inches)

Case Material : Plastic resin (flammability to UL 94V-0 rated)


Weight : 166g

Test Setup

Peak-to-Peak Output Noise Measurement Test

Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -100µA.

Overload Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

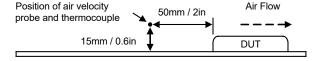
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Input Source Impedance

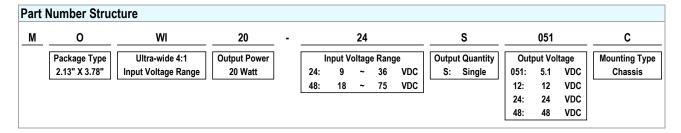
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $10\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.



Maximum Capacitive Load


The MOWI20C series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

MTBF and Reliability

The MTBF of MOWI20C series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MOWI20-24S051C	775,200	
MOWI20-24S12C	894,800	
MOWI20-24S24C	896,100	
MOWI20-24S48C	959,400	Llaure
MOWI20-48S051C	795,800	Hours
MOWI20-48S12C	905,000	
MOWI20-48S24C	900,500	
MOWI20-48S48C	966,300	