

MJWI40 Series EC Note

DC-DC CONVERTER 40W, Highest Power Density

Features

- ► Smallest Encapsulated 40W Converter
- ► Ultra-compact 1"×1" Package
- ► Ultra-high Power Density 93W/in³
- ► Excellent Efficiency up to 93%
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ➤ Operating Ambient Temp. Range -40°C to +85°C
- No Min. Load Requirement
- ➤ Very Low No Load Power Consumption
- ► Under-voltage, Overload/Temperature and Short Circuit Protection
- ► Remote On/Off Control, Output Voltage Trim
- ► Shielded Metal Case with Insulated Baseplate
- ► UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking (Pending)

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- ➤ Computer equipment
- ➤ Communications equipment

Product Overview

The MJWI40 series represents the smallest encapsulated 40W DC-DC isolated converters available, designed for compact, high-performance applications. With an ultra-compact 1"×1" package and an ultra-high power density of 93W/in³, these converters are optimized for efficiency and space-saving designs. They feature an ultra-wide 4:1 input voltage range, fully regulated output voltage, and deliver up to 93% efficiency. The series also offers I/O isolation rated at 1500 VDC and operates in extreme temperatures from -40°C to +85°C without a minimum load requirement.

Additional features include low no-load power consumption, comprehensive protections (under-voltage, overload, temperature, and short circuit), and convenient remote On/Off control with output voltage trim. For enhanced thermal management, the MJWI40 series also provides an optional heatsink, ensuring optimal heat dissipation and stable performance in more demanding environments. Housed in a shielded metal case with an insulated baseplate, the MJWI40 series meets UL/cUL/IEC/EN 62368-1 safety standards and bears CE marking.

These converters are ideal for applications such as server power supplies, communication equipment, and electric vehicle chargers, where high power requirements and limited space are critical considerations. The MJWI40 series provides a reliable, efficient, and space-optimized power solution for such demanding environments.

Table of contents

Model Selection Guide	P2	External Output Trimming	P22
		Test Setup	
Remote On/Off Control	P2	Technical Notes	P23
Output Specifications	P3	Remote ON/OFF Implementation	P24
General Specifications	P3	Packaging Information for Tube	P24
EMC Specifications	P3	Wave Soldering Considerations	P25
Environmental Specifications	P4	Hand Welding Parameter	P25
•		Part Number Structure	
Package Specifications	P21	MTBF and Reliability	P26
Recommended Pad Lavout		•	

Model Selection	Guide						
Model	Input	Output	Output	Inj	put	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MJWI40-24S05		5	8000	1832		14300	91
MJWI40-24S12		12	3350	1821		2500	92
MJWI40-24S15		15	2700	1834		1600	92
MJWI40-24S24	24	24	1700	1868		620	91
MJWI40-24S48	(9 ~ 36)	48	835	1856	8	160	90
MJWI40-24S54		54	740	1830		120	91
MJWI40-24D12		±12	±1700	1868		1250#	91
MJWI40-24D15		±15	±1350	1854		800#	91
MJWI40-48S05		5	8000	906		14300	92
MJWI40-48S12		12	3350	901		2500	93
MJWI40-48S15		15	2700	907		1600	93
MJWI40-48S24	48	24	1700	924	_	620	92
MJWI40-48S48	(18 ~ 75)	48	835	835 928 5		160	90
MJWI40-48S54		54 740		915		120	91
MJWI40-48D12		±12	±1700	934		1250#	91
MJWI40-48D15		±15	±1350	938		800#	90

For each output

Input Specifications						
Parameter	•	Conditions / Model	Min.	Тур.	Max.	Unit
In a control Common Vallance (400 mag)		24V Input Models	-0.7		50	
Input Surge Voltage (100ms. max)		48V Input Models	-0.7		100	
Chart I in Thurshald Maltans		24V Input Models			9	VDC
Start-Up Threshold Voltage		48V Input Models			18	VDC
Index\/altanal_asl.ct		24V Input Models		7.8		
Under Voltage Lockout		48V Input Models		16.5		
Otant I In Time	Power Up	Naminal Vin and Constant Besinting Load		30	50	ms
Start Up Time	Remote On	Nominal Vin and Constant Resistive Load		30	50	ms

Remote On/Off Contr	ol									
Parame	ter	Conditions	Min.	Тур.	Max.	Unit				
Danitive Innie (Chandand)	Converter On	3.5\								
Positive logic (Standard)	Converter Off	0V ~ 1.2V or Short Circuit								
Nanativa Innia (Ontina)	Converter On	0V ~ 1.2V or Short Circuit								
Negative logic (Option)	Converter Off	3.5\	/ ~ 12V or Open Circuit							
Positive logic Control Input (Current (on)	Vctrl = 5.0V		0.5		mA				
Positive logic Control Input (Current (off)	Vctrl = 0V		-0.5		mA				
Negative logic Control Input	Current (on)	Vctrl = 0V		-0.5		mA				
Negative logic Control Input	legative logic Control Input Current (off) Vctrl = 5.0V 0.5									
Control Common		Referenced to Negative Input								
Standby Input Current					3	mA				

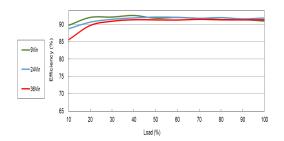
Date:2024-11-19 Rev:1 MJWI40 Series – EC Notes 2

Output Specifications							
Parameter		Conditions / Mo	odel	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%Vnom.
Output Voltage Balance		ual Output, Balanc	ed Loads			±2.0	%
Line Regulation	V	in=Min. to Max. @	Full Load			±0.2	%
Load Regulation		lo=0% to 100	%			±0.3	%
Cross Regulation (Dual)	Asy	mmetrical Load 25%	% / 100% FL			±5.0	%
Minimum Load			No minimum L	oad Requireme	ent		
		5Vo	Measured with a 10µF MLCC and 33µF/35V Polymer		75	100	mV _{P-P}
Ripple & Noise	0-20 MHz	12Vo,15Vo ±12Vo, ±15Vo	Measured with a 10µF MLCC and 33µF/35V Polymer		100	125	mV _{P-P}
	Bandwidth	24Vo	Measured with a 10µF MLCC and 33µF/35V Polymer		150	200	mV _{P-P}
		48Vo, 54Vo	Measured with a 2.2µF MLCC		280	330	mV _{P-P}
Transient Recovery Time		25% Load Step Ch	nange ₍₂₎			500	μS
Temperature Coefficient		-				±0.02	%/°C
Trim Up / Down Range (See Page 22)	9,	6 of Nominal Outpu	t Voltage			±10	%
Over Load Protection		Hiccup		110		180	%
Overshoot						5	%
Short Circuit Protection		Con	inuous, Automatic Rec	overy (Hiccup I	Mode 1Hz typ.)	

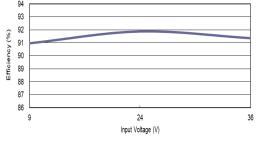
General Specifications							
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit		
I/O loolotion Voltage	60 Seconds	1500			VDC		
I/O Isolation Voltage	1 Second	1800			VDC		
Isolation Voltage Input/Output to case	60 Seconds	1000			VDC		
I/O Isolation Resistance	500 VDC	1000			MΩ		
I/O Isolation Capacitance	100kHz, 1V		1500		pF		
Cuitabia a Fasanca au	5Vo		185		kHz		
Switching Frequency	Other Output		210		kHz		
MTBF(calculated)	MIL-HDBK-217F@25°C Full Load, Ground Benign	1,051,007			Hours		
Safety Approval (Pending) UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)							

Parameter		Standards & Level		Performance						
That	Conduction	EN 55020	Mith automal agreements	01 4						
EMI ₍₆₎	Radiation	EN 55032	With external components	Class A						
	EN 55035	EN 55035								
	FOD	Direct discharge	Indirect discharge HCP & VCP	Α						
	ESD	EN 61000-4-2 Air ± 8kV, Contact ± 6kV	Contact ± 6kV							
-MC	Radiated immunity	EN 61000-4-3	10V/m	Α						
EMS ₍₆₎	Fast transient	EN 61000-4-4	±2kV	Α						
	Surge	EN 61000-4-5	5 ±2kV	Α						
	Conducted immunity	EN 61000-4-6	Α							
	PFMF	EN 61000-4-8 100A/m for Cont	Α							

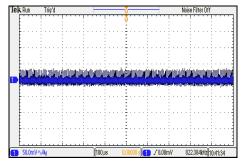
Date:2024-11-19 Rev:1 MJWI40 Series – EC Notes 3

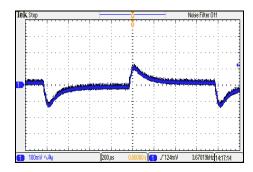

Environmental Specifications						
Parameter	Model	Min.	Ma	Unit		
Parameter		IVIII1.	without Heatsink	with Heatsink	UIIIL	
Operating Ambient Temperature Range Nominal Vin, Load 100% Inom.	MJWI40-24S12, MJWI40-24S15, MJWI40-24S24 MJWI40-24D12, MJWI40-24D15, MJWI40-48S12 MJWI40-48S15, MJWI40-48S24, MJWI40-48D12 MJWI40-48D15	-40	+65	+75	°C	
(for Power Derating see relative Derating Curves)	MJWI40-24S05, MJWI40-24S48, MJWI40-24S54 MJWI40-48S05, MJWI40-48S48, MJWI40-48S54		+60	+70		
Case Temperature			+1	°C		
Over Temperature Protection (Case)			+115 typ.		°C	
Storage Temperature Range		-50	+1:	25	°C	
Humidity (non condensing)			9:	% rel. H		
RFI	Six-Sided Shield	ed, Metal	Case			
Lead Temperature (1.5mm from case for 10Sec.)			26	0	℃	

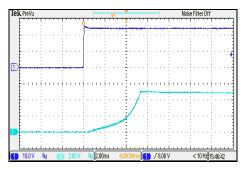
Notes


- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 It is necessary to parallel a capacitor across the input pins under hot-swap operation. Minimum Capacitance: 68μF/ 100V KZE.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Do not exceed maximum power specification when adjusting output voltage.
- 8 Specifications are subject to change without notice.
- 9 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

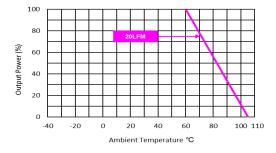
Date:2024-11-19 Rev:1 MJWI40 Series – EC Notes 4



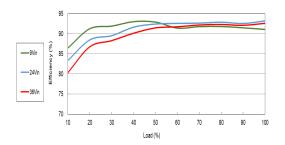

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

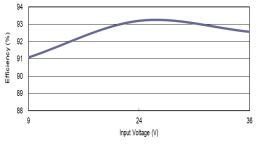
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

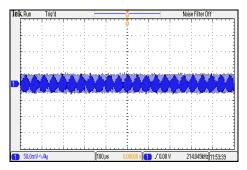
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

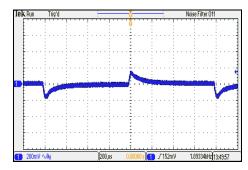


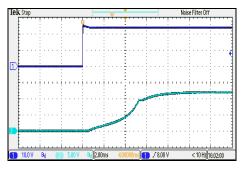
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

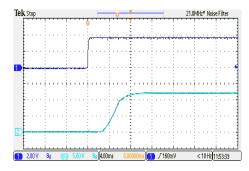


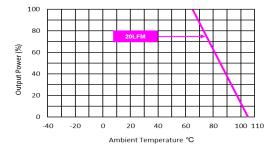
Derating Output Current Versus Ambient Temperature



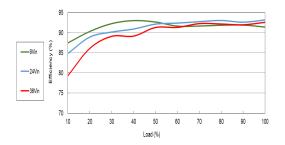

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

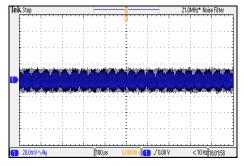
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

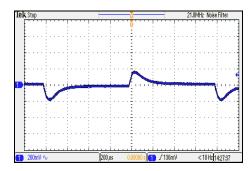


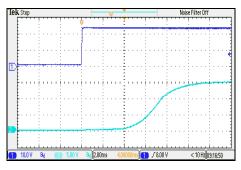
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

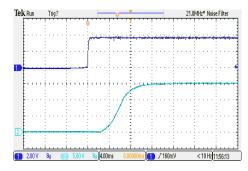


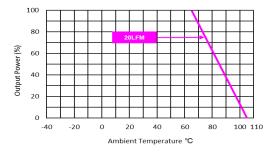
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



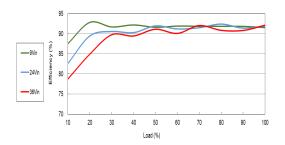

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

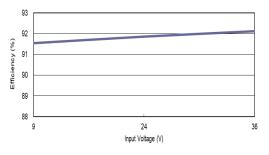

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

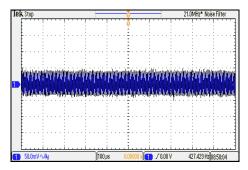
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

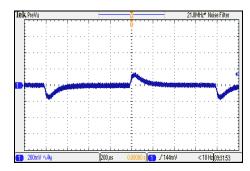


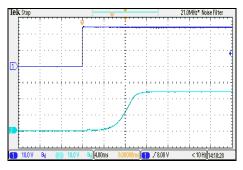
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

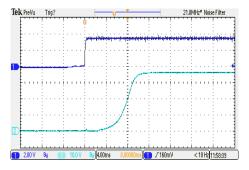


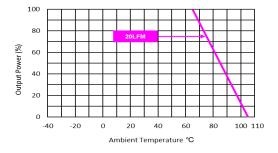
Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$



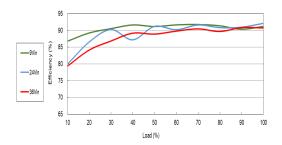

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

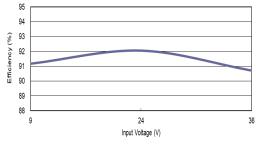

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

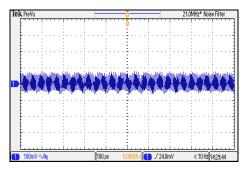
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

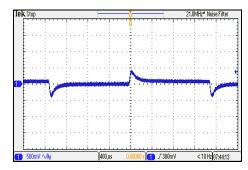


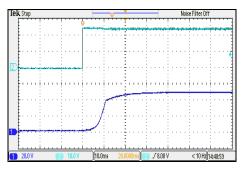
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load



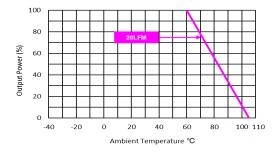
Derating Output Current Versus Ambient Temperature



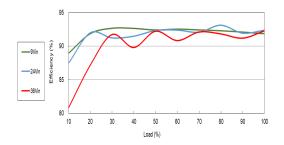

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

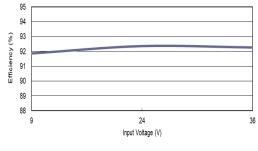

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

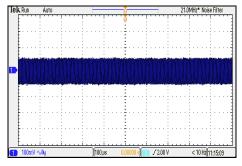
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

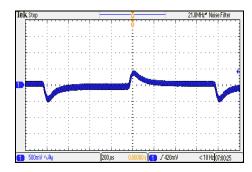


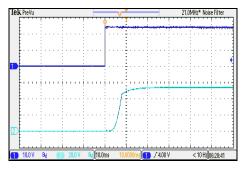
ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

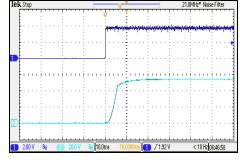


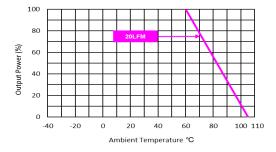
Derating Output Current Versus Ambient Temperature



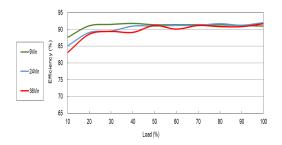

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

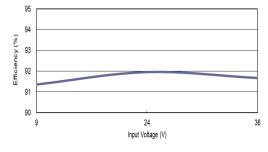

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

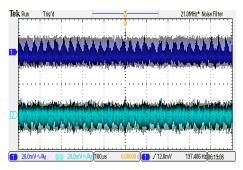
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

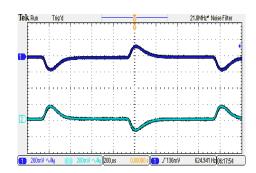


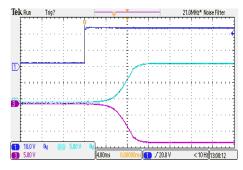
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

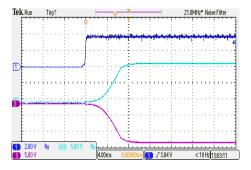


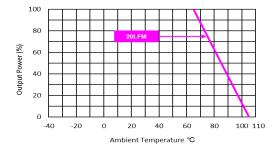
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



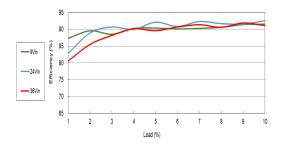

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

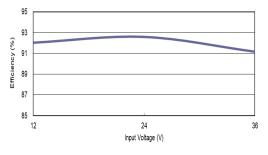

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

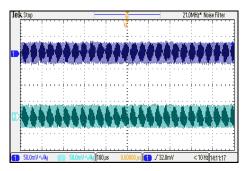
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

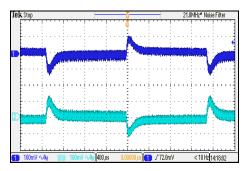


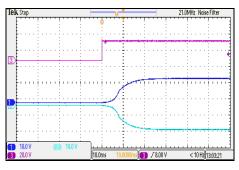
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

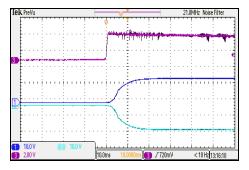


Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



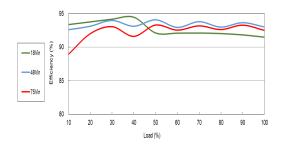

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

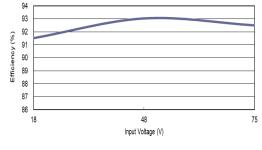

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

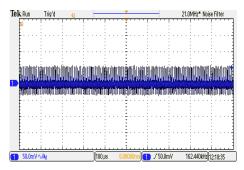
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

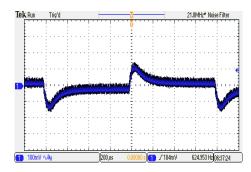


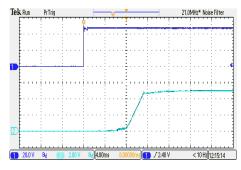
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

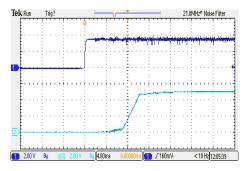


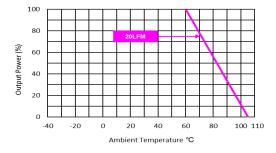
Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$



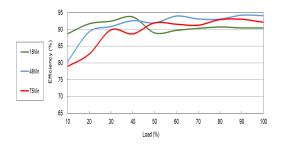

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

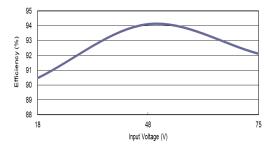

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

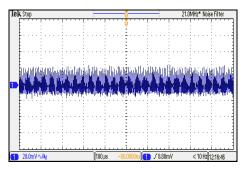
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

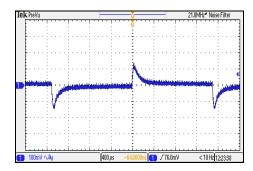


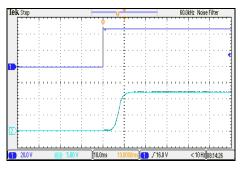
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

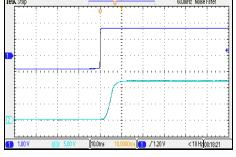


Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$



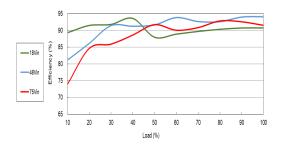

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

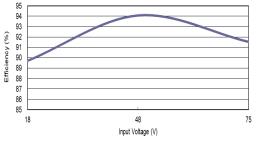

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

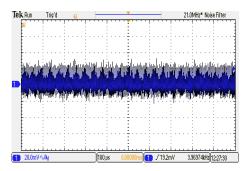
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

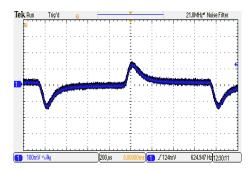


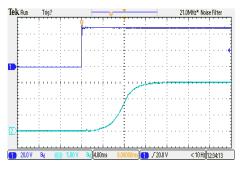
ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

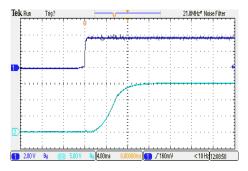


Derating Output Current Versus Ambient Temperature



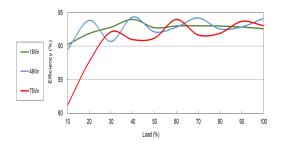

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

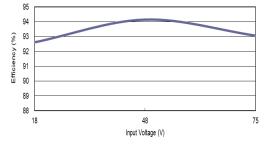

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

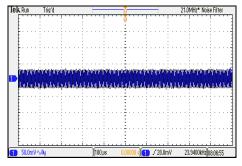
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

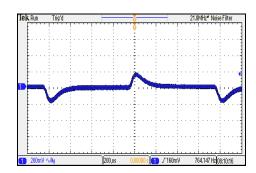


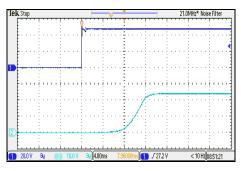
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

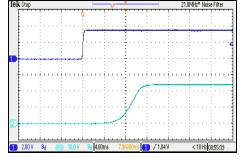


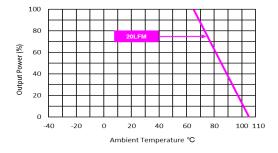
Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$



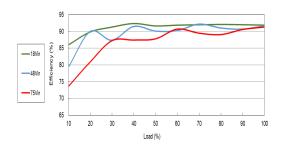

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

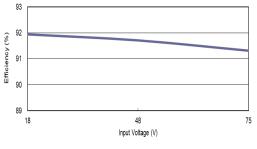

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

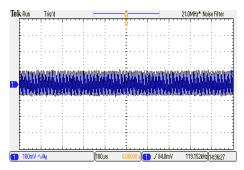
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load



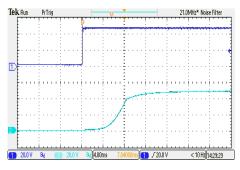
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

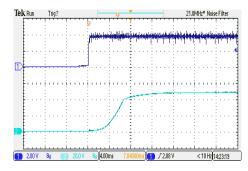


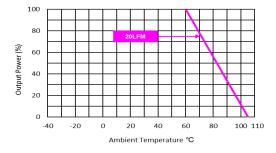
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



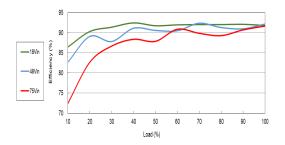

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

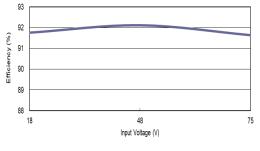

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

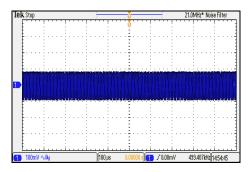
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

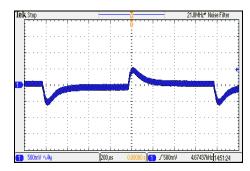


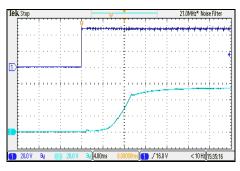
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

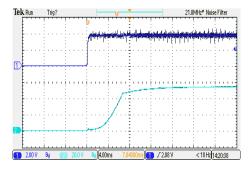


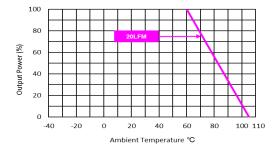
Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$



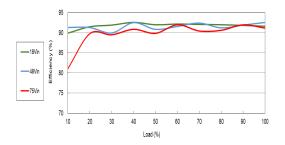

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

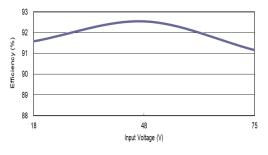

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

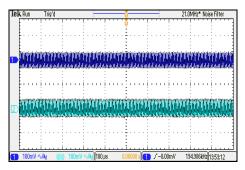
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

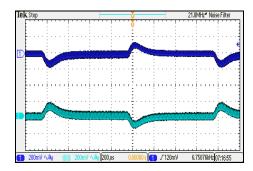


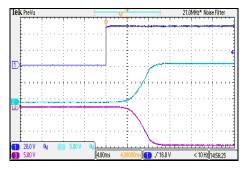
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

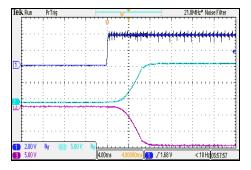


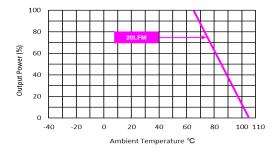
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



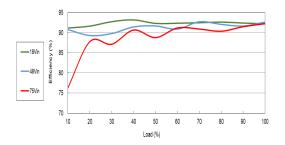

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

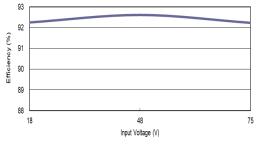

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in nom}$

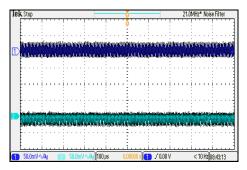
Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}\text{=}V_{\text{in nom}}$; Full Load

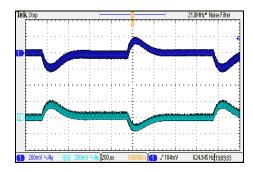


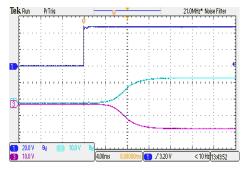
ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

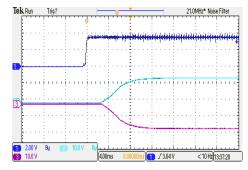


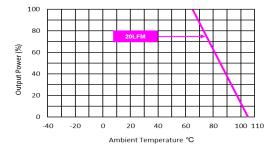
Derating Output Current Versus Ambient Temperature




Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

ON/OFF Voltage Start-Up and Output Rise Characteristic $V_{\text{in}} {=} V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Pin Con	Pin Connections											
Pin	Single Output	Dual Output	Diameter mm (inches)									
1	+Vin	+Vin	Ø 1.0 [0.04]									
2	-Vin	-Vin	Ø 1.0 [0.04]									
3	+Vout	+Vout	Ø 1.0 [0.04]									
4	Trim	Common	Ø 1.0 [0.04]									
5	-Vout	-Vout	Ø 1.0 [0.04]									
6	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]									

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02)

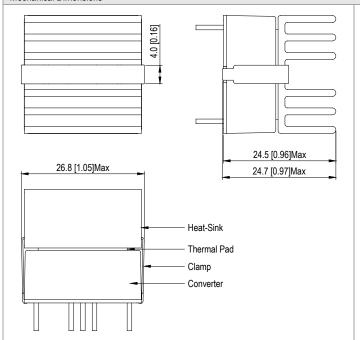
X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

 Case Size
 : 25.4x25.4x11.0 mm (1.0x1.0x0.43 inches)

 Case Material
 : Metal With Non-Conductive Baseplate

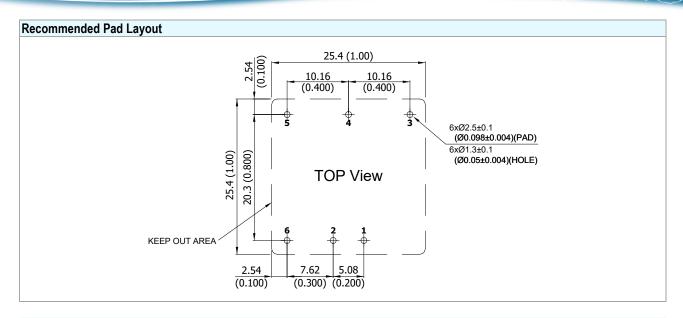

 Base Material
 : FR4 PCB (flammability to UL 94V-0 rated)

 Pin Material
 : Copper Alloy

 Weight
 : 26g

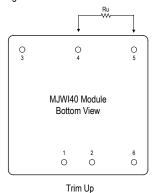
Heatsink (Option -HS)

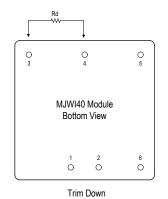
Mechanical Dimensions



Heatsink Material: Aluminum Finish: Anodic treatment (black)

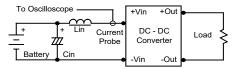
Weight: 6g


- ➤ The advantages of adding a heatsink are:
- 1.To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2.To increase Operating temperature of the DC-DC converter, please refer to Derating Curve.

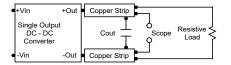


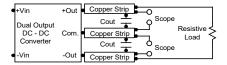
External Output Trimming

Output can be externally trimmed by using the method shown below


	MJWI40-XXS05		MJWI40-XXS12		MJWI40	MJWI40-XXS15		MJWI40-XXS24		MJWI40-XXS48		MJWI40-XXS54	
Trim Range	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	
1	138.88	106.87	413.55	351.00	530.73	422.77	598.97	486.83	2043.74	1685.06	2774.19	2196.91	
2	62.41	47.76	184.55	157.50	238.61	238.61 189.89		217.87	913.77	755.03	1243.64	982.46	
3	36.92	28.06	108.22	93.00	141.24	112.26	157.59	128.21	537.11	445.02	733.46	577.64	
4	24.18	18.21	70.05	60.75	92.56	73.44	102.42	83.38	348.78	290.02	478.37	375.23	
5	16.53	12.30	47.15	41.40	63.35	50.15	69.31	56.49	235.79	197.01	325.32	253.78	
6	11.44	8.36	31.88	28.50	43.87	34.63	47.24	38.56	160.46	135.01	223.28	172.82	
7	7.79	5.55	20.98	19.29	29.96	23.54	31.48	25.75	106.65	90.72	150.40	114.99	
8	5.06	3.44	12.80	12.37	19.53	15.22	19.66	16.14	66.29	57.51	95.74	71.61	
9	2.94	1.79	6.44	7.00	11.41	8.75	10.46	8.67	34.90	31.67	53.22	37.88	
10	1.24	0.48	1.35	2.70	4.92	3.58	3.11	2.69	9.79	11.01	19.21	10.89	

Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use external ceramic capacitor, please refer to the descriptions in the "Ripple & Noise" section on page 3. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

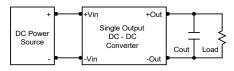
Remote On/Off

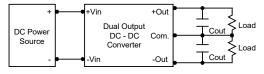
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal.

The switch can be an open collector or equivalent. A logic low is 0V to 1V. A logic high is 2.5V to 50V. The maximum sink current at on/off terminal during a logic low is -500µA. The maximum allowable leakage current of the switch at on/off terminal (2.5 to 50V) is 500µA.

Overload Protection

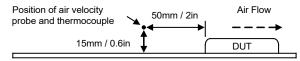
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $68\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 68µF capacitors at the output.

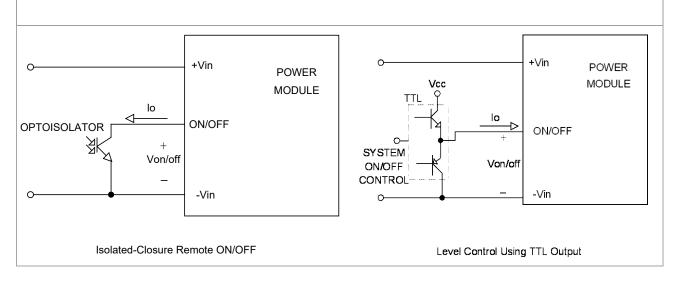


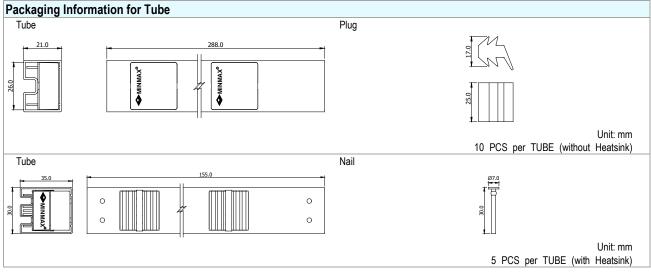
Maximum Capacitive Load

The MJWI40 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

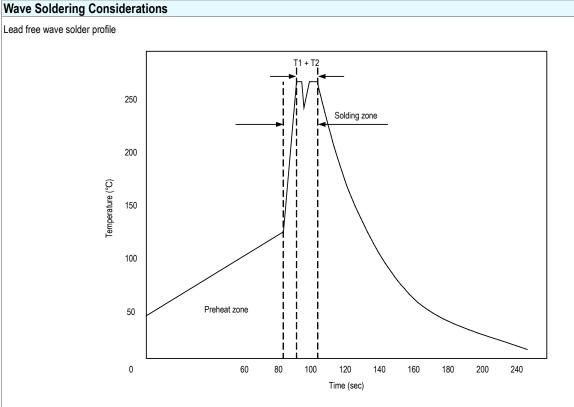
Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.





Remote ON/OFF Implementation


The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Remote ON/OFF implementation

Zone	Reference Parameter
Preheat	Rise temp. speed: 3°C/sec max.
zone	Preheat temp.: 100~130°C
Actual	Peak temp. : 250~260°C
heating	Peak time(T1+T2): 4~6 sec

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

M	JJ	mber Structure J WI 40		40 -	0 - 24 S 05						N					
	Package Type	ype Ultra-wide 4:1	Output Power	Output Power		li	nput V	oltag	e Rang	ge	Outp	ut Quantity	Out	put Vo	Itage	Negative logic
	1" X 1"	Input Voltage Range	40 Watt		24:	9	~	36	VDC	S:	Single	05:	5	VDC		
					48:	18	~	75	VDC	D:	Dual	12:	12	VDC		
												15:	15	VDC		
												24:	24	VDC		
												48:	48	VDC		
												54:	54	VDC		

MTBF and Reliability

The MTBF of MJWI40 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MJWI40-24S05	1,051,007	Hours
MJWI40-24S12	1,383,764	
MJWI40-24S15	1,348,211	
MJWI40-24S24	1,329,292	
MJWI40-24S48	1,258,761	
MJWI40-24S54	1,560,193	
MJWI40-24D12	1,362,598	
MJWI40-24D15	1,319,634	
MJWI40-48S05	1,270,138	
MJWI40-48S12	1,657,182	
MJWI40-48S15	1,617,560	
MJWI40-48S24	1,636,046	
MJWI40-48S48	1,267,747	
MJWI40-48S54	1,576,184	
MJWI40-48D12	1,373,589	
MJWI40-48D15	1,080,225	