

MCWI08 Series EC Note

DC-DC CONVERTER 8W, Regulated Output, SIP Package

Features

- ► Smallest Encapsulated 8W Converter
- ► Industrial Standard SIP-8 Package
- ► Ultra-wide 4 : 1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Wide Operating Temperature Range
- No Min. Load Requirement
- ► Very Low No Load Power Consumption
- ► Under-voltage, Overload and Short Circuit Protection
- ► Remote On/Off Control
- ► UL/cUL/IEC/EN 62368-1 Safety Approval (Pending)

Applications

- ► Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MCWI08 series is a compact 8W isolated DC-DC converter designed in a high-density SIP-8 package, delivering a power density of 52W/in³. It features an ultra-wide 4:1 input voltage range with models supporting 4.5–18VDC, 9–36VDC, or 18–75VDC, offering design flexibility across various industrial and embedded applications.

The series provides precisely regulated output voltages of 5V, 12V, 15V, 24V, ±12V, and ±15V, with 1500VDC input-to-output isolation ensuring robust performance in demanding environments. Operation is supported over an extended temperature range with no minimum load requirement and ultra-low no-load and standby power consumption for high efficiency in energy-sensitive systems.

Integrated protection features include under Voltage Shutdown, output overload, and continuous short-circuit protection. A remote on/off control function enables flexible system-level power management.

Certified to UL/cUL/IEC/EN 62368-1 safety standards, the MCWI08 series is ideal for space-constrained industrial, control, and embedded system designs requiring reliable and efficient DC-DC power conversion.

Table of contents

Model Selection GuideP	2 Recommended Pad Layout	.P23
Input SpecificationsP	2 Test Setup	.P24
Remote On/Off ControlP	2 Technical Notes	.P24
Output SpecificationsP	Remote ON/OFF Implementation	.P25
General SpecificationsP	3 Packaging Information for Tube	.P25
EMC SpecificationsP	3 Wave Soldering Considerations	.P26
Environmental SpecificationsP	3 Hand Welding Parameter	.P26
Characteristic CurvesP	5 Part Number Structure	.P27
Package SpecificationsP2	3 MTBF and Reliability	.P27

Date:2025-03-19 Rev:0

del Selection G	Input	Output	Output	Inp	ut	Max. capacitive	Efficiency	
Number	Voltage	Voltage	Current	Curr		Load	(typ.)	
Trainibo.	(Range)	Vollago	Max.	@Max. Load	@No Load	Loud	@Max. Load	
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%	
MCWI08-12S05		5	1600	758		3300	88	
MCWI08-12S12		12	665	756		560	88	
MCWI08-12S15	12	15	535	760	00	390	88	
MCWI08-12S24	(4.5 ~ 18)	24	335	761	20	150	88	
MCWI08-12D12		±12	±335	761			330#	88
MCWI08-12D15		±15	±265	753		180#	88	
MCWI08-24S05		5	1600	379		3300	88	
MCWI08-24S12		12	665	378		560	88	
MCWI08-24S15	24	15	535	380	40	390	88	
MCWI08-24S24	(9 ~ 36)	24	335	381	10	150	88	
MCWI08-24D12		±12	±335	381		330#	88	
MCWI08-24D15		±15	±265	376		180#	88	
MCWI08-48S05		5	1600	189		3300	88	
MCWI08-48S12		12	665	189		560	88	
MCWI08-48S15	48	15	535	190		390	88	
MCWI08-48S24	(18 ~ 75)	24	335	190	- 8	150	88	
MCWI08-48D12		±12	±335	190	1	330#	88	
MCWI08-48D15	1	±15	±265	188	1	180#	88	

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
Start-Up Threshold Voltage	12V Input Models			4.5	
	24V Input Models			9	VDC
	48V Input Models			18	
	12V Input Models		4		
Under Voltage Shutdown	24V Input Models		8		
	48V Input Models		16		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30		ms
Input Filter	All Models		Internal	Capacitor	

Remote On/Off Control						
Parameter	Conditions Min. Typ. Max.					
Converter On	3.5V ~ 12V or Open Circuit					
Converter Off	0V ~ 1.2V or Short Circuit					
Control Input Current (on)	Vctrl = 5.0V			0.5	mA	
Control Input Current (off)	Vctrl = 0V0.5			-0.5	mA	
Control Common	Referenced to Negative Input					
Standby Input Current	Nominal Vin		2.5		mA	

Date:2025-03-19 Rev:0 MCWI08 Series – EC Notes 2

Output Specifications							
Parameter		Conditions / Model			Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%Vnom.
Output Voltage Balance	Dua	l Output, Balance	d Loads		±1.0	±2.0	%
Line Regulation	Vin=	Min. to Max. @F	ull Load		±0.2	±0.8	%
Load Regulation		lo=0% to 100%	6			±1.0	%
Load Cross Regulation (Dual Output Models)	Asymmetrical Load 25/100% Full Load					±5.0	%
Minimum Load		No minimum Load Requirement					
D: 1 0 N :	0-20 MHz	5V Output	Measured with a		80	100	mV _{P-P}
Ripple & Noise	Bandwidth	Other Output	1µF/50V MLCC		100	140	mV _{P-P}
Transient Recovery Time		50/ 1 101 01				500	μS
Transient Response Deviation		25% Load Step Change			±3	±5	%
Temperature Coefficient					±0.01	±0.02	%/°C
Over Load Protection	Hiccup		110		180	%	
Overshoot						5	%
Short Circuit Protection		Continuous, Automatic Recovery (Hiccup Mode 1 Hz typ.)					

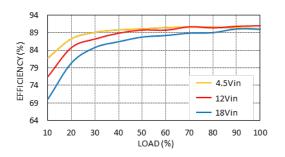
General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O loolotion Voltage	60 Seconds	1500			VDC	
I/O Isolation Voltage	1 Second	1800			VDC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V			1500	pF	
Switching Frequency			350		kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,001,209			Hours	
Safety Approvals (Pending)	UL/cUL 62368-1 recognition (U	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)				

EMC Specifications						
Parameter		Standards & Level Performance				
ENI	Conduction	EN 55032	With outernal components	Class A		
EMI ₍₆₎	Radiation	EN 55032	With external components	Class A		
	EN 55035					
	ESD	Direct discharge	Indirect discharge HCP & VCP			
		EN 61000-4-2 Air ± 8kV	Contact ± 6kV	A		
EMC	Radiated immunity	EN 61000-4-3 10V/m		Α		
EMS ₍₆₎	Fast transient	EN 61000-4	EN 61000-4-4 ±2kV			
	Surge	EN 61000-4-5 ±2kV		Α		
	Conducted immunity	EN 61000-4-6	Α			
	PFMF EN 61000-4-8 100A/m for Continuous; 1000 A/m for 1 s					

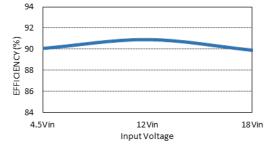
Environmental Specifications					
Parameter	Model	Min.	Max.	Unit	
Operating Ambient Temperature Range	5V Output	40	+70	℃	
Nominal Vin, Load 100% Inom. (for Power Derating see relative Derating Curves)	Other Output	-40	+75		
Case Temperature			+105	°C	
Storage Temperature Range		-50	+125	°C	
Humidity (non condensing)			95	% rel. H	
Lead Temperature (1.5mm from case for 10Sec.)			260	°C	

Date:2025-03-19 Rev:0 MCWI08 Series – EC Notes 3

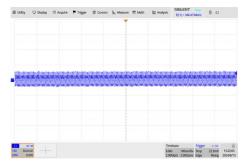
POWER FOR A BETTER FUTURE

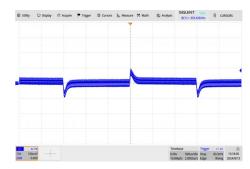


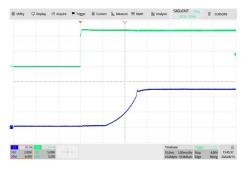
Notes

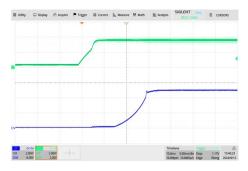

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 It is necessary to parallel a capacitor across the input pins under hot-swap operation. Minimum Capacitance: 68µF/100V KZE.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Specifications are subject to change without notice.
- 8 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

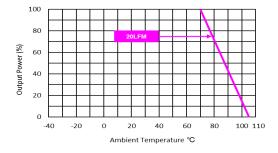
Date:2025-03-19 Rev:0 MCWI08 Series – EC Notes 4



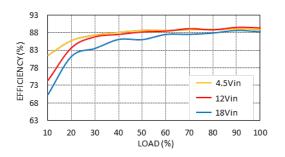

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

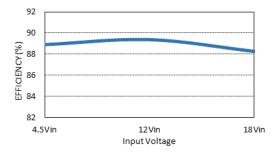

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

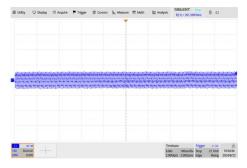
Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

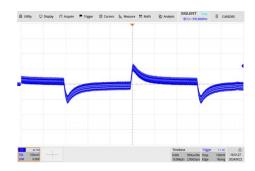


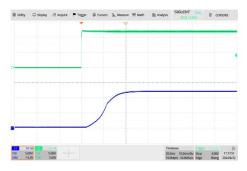
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

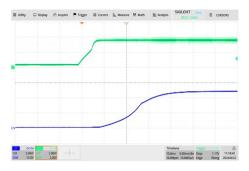


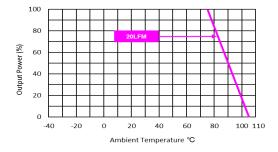
Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$



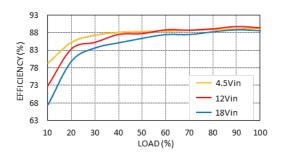

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

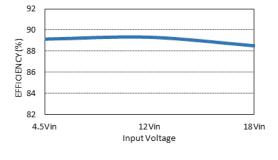

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

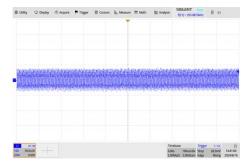
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

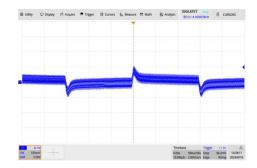


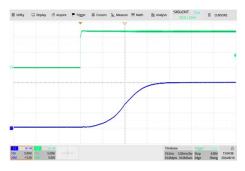
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

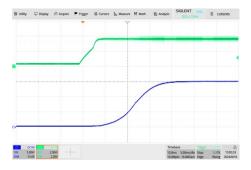


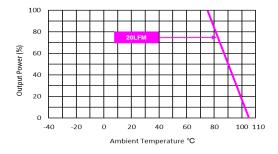
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



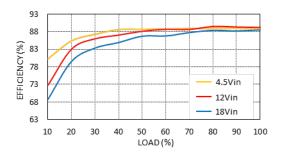

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

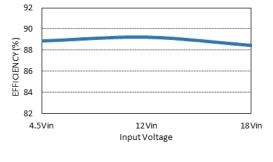

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

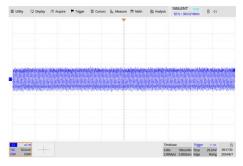
Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

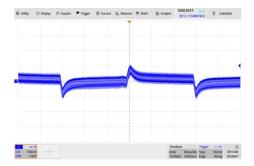


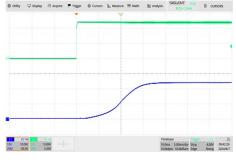
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

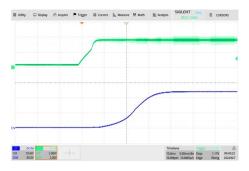


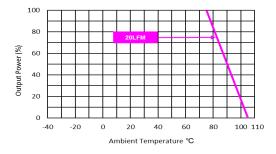
Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$



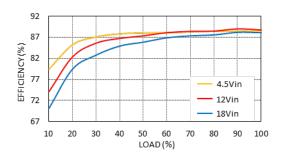

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

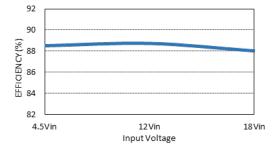

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

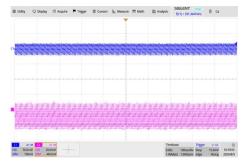
Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

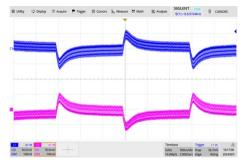


ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load



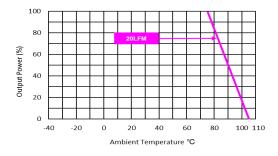
Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$



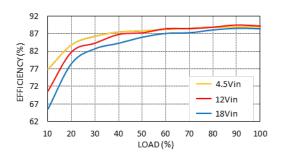

Efficiency Versus Output Current

Efficiency Versus Input Voltage Full Load

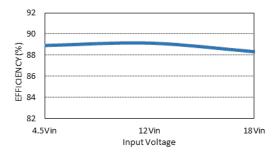
Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

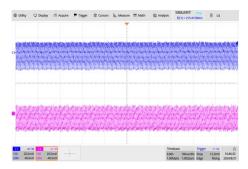
Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

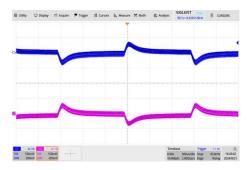


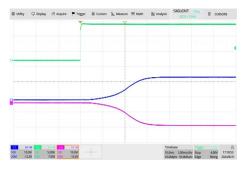
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in}=V_{in nom}; Full Load

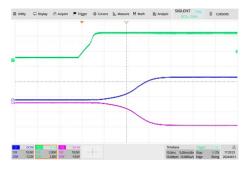


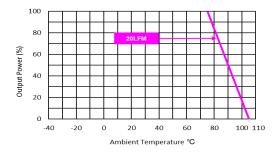
Derating Output Current Versus Ambient Temperature $V_{in}=V_{in nom}$




Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

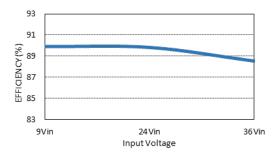

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

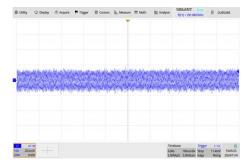
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

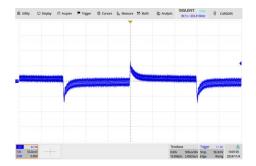


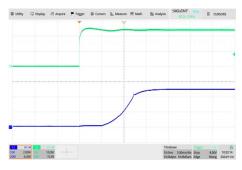
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

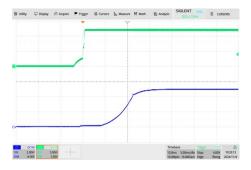


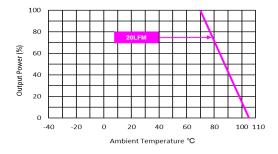
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



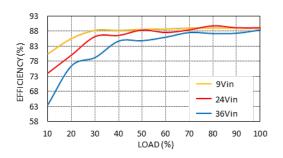

Efficiency Versus Output Current

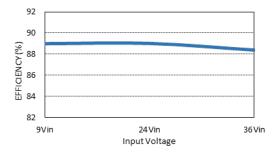

Efficiency Versus Input Voltage Full Load

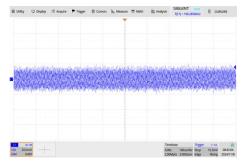

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

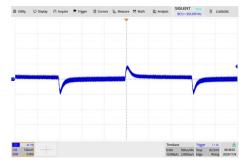

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

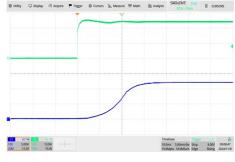
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

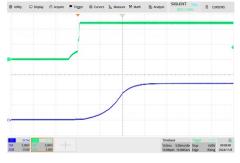

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

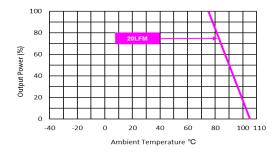

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$


All test conditions are at 25°C The figures are identical for MCWI08-24S12

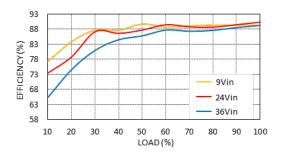

Efficiency Versus Output Current

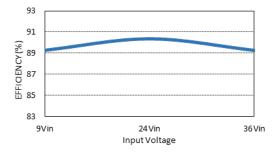

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

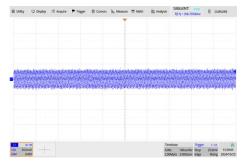

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

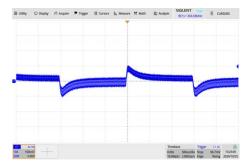
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

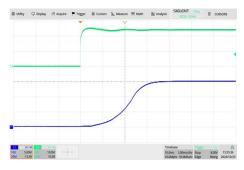

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

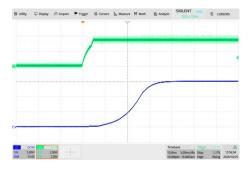

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

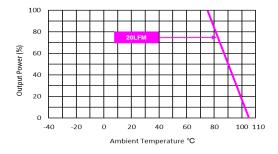
Date:2025-03-19 Rev:0



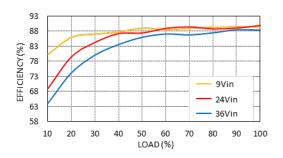

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

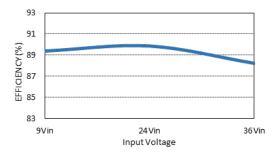

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

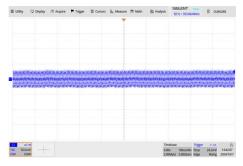
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

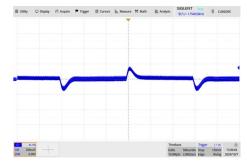


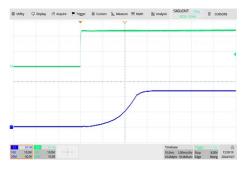
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

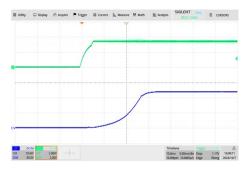


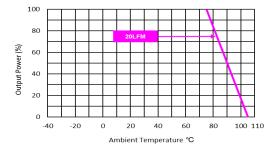
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



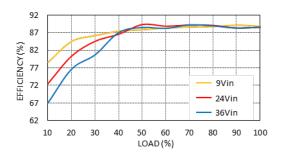

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

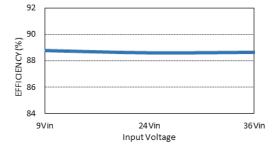

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

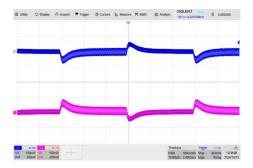


ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

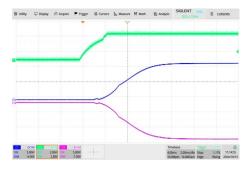


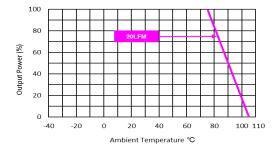
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



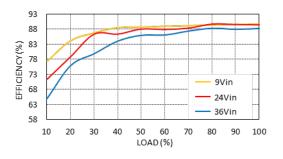

Efficiency Versus Output Current

Efficiency Versus Input Voltage Full Load

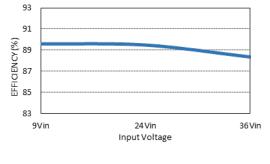

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load; V_{in} = $V_{in nom}$

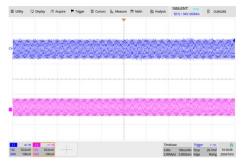
Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

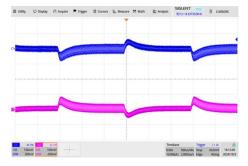


ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

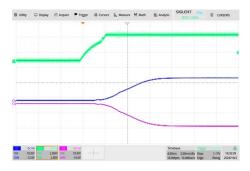


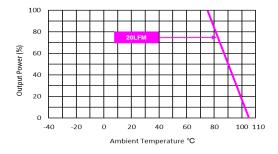
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



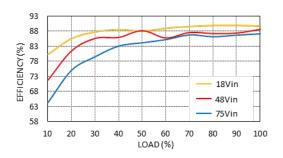

Efficiency Versus Output Current

Efficiency Versus Input Voltage Full Load

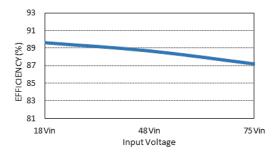

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

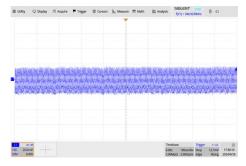
Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

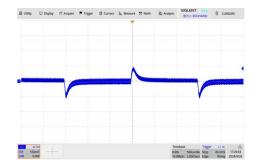


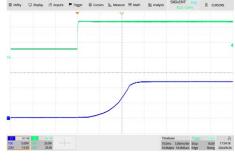
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

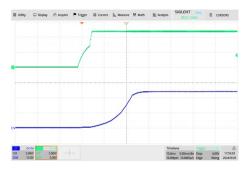


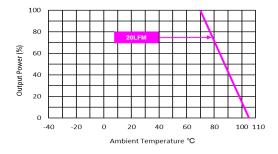
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



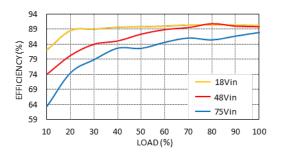

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

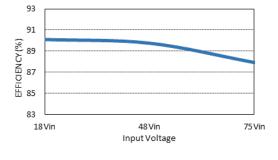

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

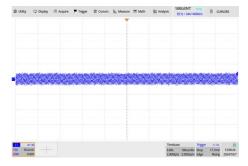
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

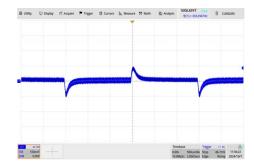


ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

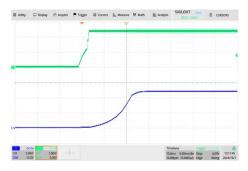


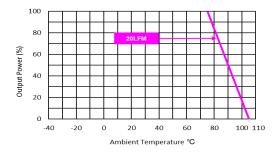
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



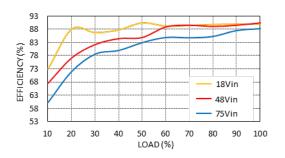

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

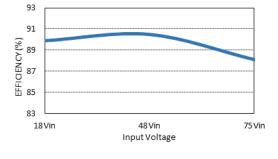

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

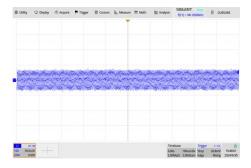
Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

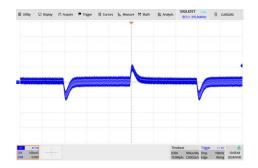


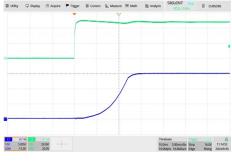
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

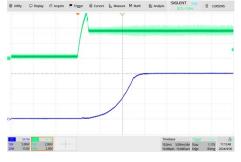


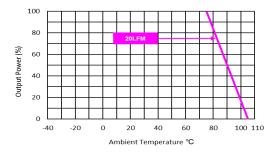
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



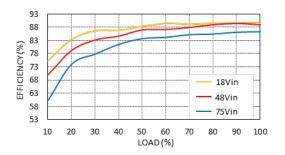

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

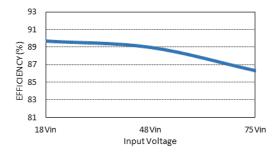

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

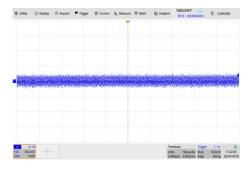
Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

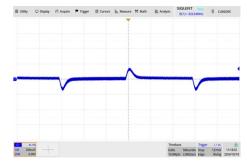


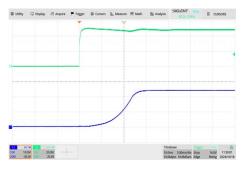
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

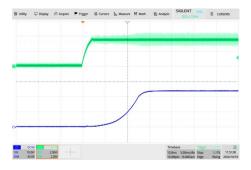


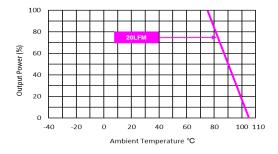
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



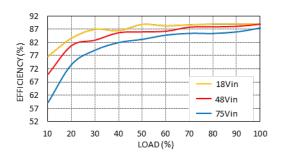

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

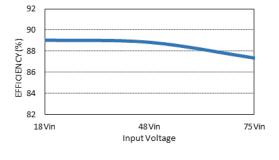

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

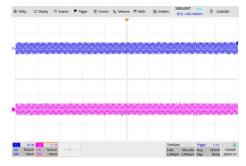
Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

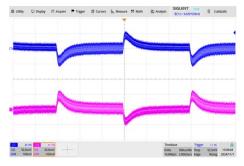


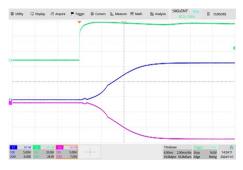
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

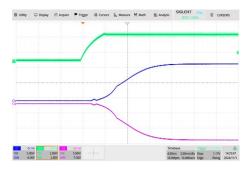


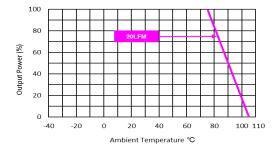
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$



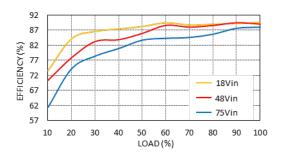

Efficiency Versus Output Current


Efficiency Versus Input Voltage Full Load

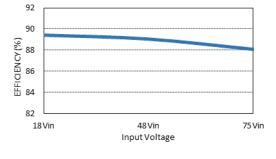

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in nom}$

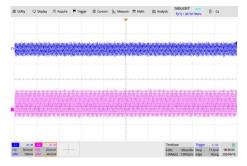
Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

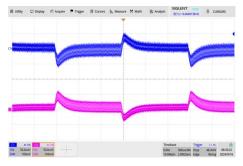


ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

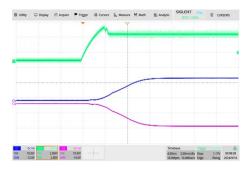


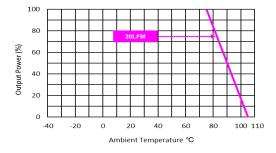
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$




Efficiency Versus Output Current

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

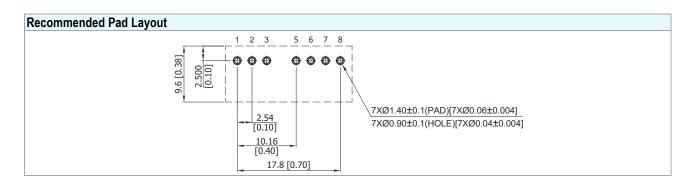
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom}}$

Pin Connections				
Pin	Single Output Dual Output			
1	-Vin	-Vin		
2	+Vin	+Vin		
3	Remote On/Off	Remote On/Off		
5	NC	NC		
6	+Vout	+Vout		
7	-Vout	Common		
8	NC	-Vout		

NC: No Connection

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02) X.XX±0.25 (X.XXX±0.01)
- ► Pins ±0.1(±0.004)

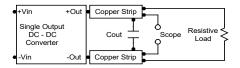

Physical Characteristics

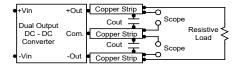
 Case Size
 : 21.8x9.6x12.0 mm (0.86x0.38x0.47 inches)

 Case Material
 : Plastic resin (flammability to UL 94V-0 rated)

 Pin Material
 : Phosphor Bronze

 Weight
 : 7g





Test Setup

Peak-to-Peak Output Noise Measurement Test

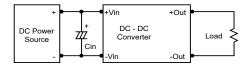
Use a Cout 1µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

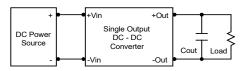
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic high is 3.5V to 12V. A logic low is 0V to 1.2 V. The maximum sink current at on/off terminal during a logic low is -500µA. The maximum allowable leakage current of the switch at on/off terminal (0V to 1.2 V) is 500µA.

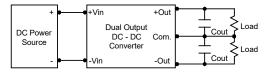
Maximum Capacitive Load


The MCWI08 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

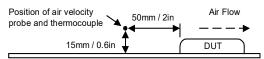
Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance

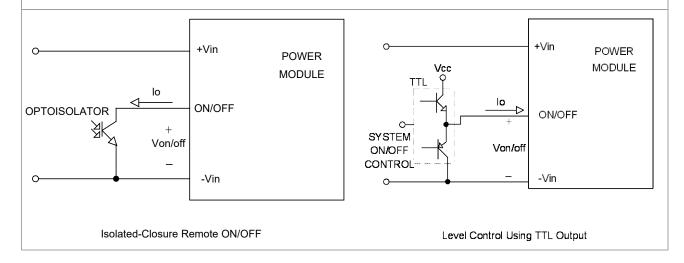

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $68\mu\text{F}$ for the 12V, 24V and 48V input devices.

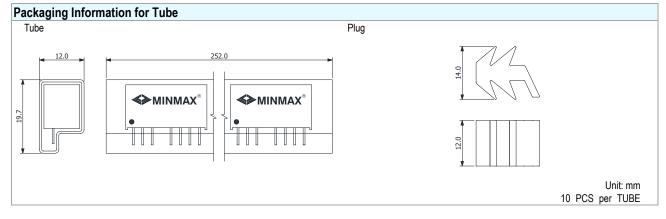
Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1µF capacitors at the output.

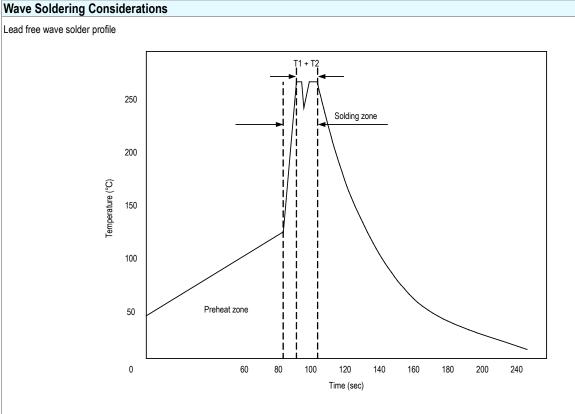
Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.





Remote ON/OFF Implementation


The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Remote ON/OFF implementation

Zone	Reference Parameter			
Preheat	Rise temp. speed : 3°C/sec max.			
zone	Preheat temp.: 100~130°C			
Actual	Peak temp. : 250~260°C			
heating	Peak time(T1+T2): 4~6 sec			

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Part Number Structure M C WI 80 12 S 05 Ultra-wide 4:1 Output Power Input Voltage Range **Output Quantity** Output Voltage Package Type SIP-8 Input Voltage Range VDC VDC 8 Watt 12: 4.5 ~ 18 S: Single 05: 5 24: 36 VDC D: Dual 12: 12 VDC 48: 75 VDC 15: VDC 18 15 VDC 24: 24

MTBF and Reliability

The MTBF of MCWI08 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MCWI08-12S05	2,124,310	
MCWI08-12S12	2,820,709	
MCWI08-12S15	2,765,295	
MCWI08-12S24	2,704,081	
MCWI08-12D12	2,683,764	
MCWI08-12D15	2,606,003	
MCWI08-24S05	2,001,209	
MCWI08-24S12	2,786,564	
MCWI08-24S15	2,749,532	lla
MCWI08-24S24	2,713,830	Hours
MCWI08-24D12	2,791,595	
MCWI08-24D15	2,754,173	
MCWI08-48S05	2,002,545	
MCWI08-48S12	2,779,060	
MCWI08-48S15	2,756,865	
MCWI08-48S24	2,719,118	7
MCWI08-48D12	2,788,707	
MCWI08-48D15	2,760,803	